Skip to main content

Advertisement

Log in

Neotropical ferns community phenology: climatic triggers in subtropical climate in Araucaria forest

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Climate regulates the fern phenology and climatic triggers influence plants from tropical and subtropical regions differently. Ferns depend on climate to regulate their life cycle, because they do not require animal interaction to reproduce. Through the pioneering study of the phenology of Araucaria forest understory in subtropical climate of Brazil, our main aims were (i) to verify which climatic variables influenced the phenological pattern of the community, (ii) to identify the differences in seasonality of ferns in distinct climatic zones of Brazil, and (iii) to compare the phenological pattern of ferns growing in other subtropical regions of the world. In an Araucaria forest fragment, we monitored the phenology of the fern community (leaf production, leaf senescence, and sporangium formation) over 2 years. At the same time, we collected photoperiod, temperature, and precipitation data. Ferns phenology was classified as continuous, discontinuous, regular, and irregular. Our results showed photoperiod and mean temperature as the best predictors for phenology. The reproductive event was seasonal, and the fern community presented themselves as continuous, irregular (activity index), and regular (intensity index) phenophases. Unlike ferns from tropical regions that generally regulate themselves by the rainfall, some ferns in a non-seasonal environment have seasonal behavior in their phenophases due to the greater amplitude of photoperiod and temperature. The community showed the same pattern of leaf production observed in populations of other subtropical regions in the world. This behavior represented the biological response of the vegetation dynamics in relation to the climatic variability of subtropical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arroyo MTK, Armesto JJ, Villagrán C (1981) Plant phenological patterns in the high andean cordillera of Central Chile. J Ecol 69:205–223

    Article  Google Scholar 

  • Barrington DS (1993) Ecological and historical factors in fern biogeography. J Biogeogr 20:275–280. https://doi.org/10.2307/2845635

    Article  Google Scholar 

  • Bauer D, Goetz MNB, Müller A, Schmitt JL (2012) Fenologia de três espécies de Myrsine L. em floresta secundária semidecídua no sul do Brasil. Rev Árvore 36:859–868. https://doi.org/10.1590/S0100-67622012000500008

    Article  Google Scholar 

  • Bauer D, Müller A, Goetz MNB, Schmitt JL (2014) Fenologia de Ocotea Pulchella (Nees) Mez, Myrcia Brasiliensis Kiaersk e Psidium Cattleyanum Sabine, em Floresta Semidecídua do sul do Brasil. Rev Flor 44:657–668. https://doi.org/10.5380/rf.v44i4.31410

    Article  Google Scholar 

  • Borchert R, Calle Z, Strahler AH, Baertschi A, Magill RE, Broadhead JS, Kamau J, Njoroge J, Muthuri C (2015) Insolation and photoperiodic control of tree development near the equator. New Phytol 205:7–13. https://doi.org/10.1111/nph.12981

    Article  Google Scholar 

  • Chiou WL, Lin JC, Wang J (2001) Phenology of Cibotium taiwanense (Dicksoniaceae). Taiwan J Sci 16:209–215

    Google Scholar 

  • Farias RP, Xavier SRS (2011a) Aspectos fenológicos de Thelypteris interrupta (Willd.) K. Iwats. (Thelypteridaceae) na Floresta Atlântica Nordestina, Paraíba, Brasil. Biotemas 24:91–96. https://doi.org/10.5007/2175-7925.2011v24n2p91

    Article  Google Scholar 

  • Farias RP, Xavier SRS (2011b) Fenologia e sobrevivência de três populações de samambaias em remanescente de Floresta Atlântica Nordestina, Paraíba, Brasil. Biotemas 24:13–20. https://doi.org/10.5007/2175-7925.2011v24n2p13

    Article  Google Scholar 

  • Farias RP, Xavier SRS (2013a) Fenologia foliar de Blechnum serrulatum Rich. (Blechnaceae) em remanescente de floresta atlântica no estado da Paraíba, Brasil. Pesquisas Bot 64:297–306

    Google Scholar 

  • Farias RP, Xavier SRS (2013b) Aspectos fenológicos de Phlebodium decumanum (Willd.) J.Sm. (Polypodiaceae) em um fragmento urbano de Floresta Atlântica no estado da Paraíba. Revista Nordestina de Biologia 21:71–78

  • Farias RP, Costa LEN, Silva IAA, Barros ICL (2015) Phenological studies of selected leaf and plant traits of Didymochlaena truncatula (Dryopteridaceae) in a Brazilian submontane tropical rainforest. Nord J Bot 33:249–255. https://doi.org/10.1111/njb.00656

    Article  Google Scholar 

  • Fournier LA (1974) Un metodo cuantitativo para la medición de caracteristicas fenológicas en arboles. Turrialba 24:422–423

    Google Scholar 

  • Frankie GW, Baker HG, Opler PA (1974) Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. J Ecol 62:881–913

    Article  Google Scholar 

  • Garcia LC, Barros FV, Lemos-Filho JP (2017) Environmental drivers on leaf phenology of ironstone outcrops species under seasonal climate. An Acad Bras Ciênc 89:131–143. https://doi.org/10.1590/0001-3765201720150049

    Article  Google Scholar 

  • Guo L, Dai J, Wang M, Xu J, Luedeling E (2015) Responses of spring phenology in temperate zone trees to climate warming: a case study of apricot flowering in China. Agric For Meteorol 201:1–7. https://doi.org/10.1016/j.agrformet.2014.10.016

    Article  Google Scholar 

  • Jackson SD (2009) Plant responses to photoperiod. New Phytol 181:517–531. https://doi.org/10.1111/j.1469-8137.2008.02681.x

    Article  CAS  Google Scholar 

  • Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462. https://doi.org/10.1126/science.1186473

    Article  Google Scholar 

  • Kovach WL (2009) Oriana – circular statistics for Windows. Version 3. Kovach Computing Services, Anglesey.

  • Landi M, Zoccola A, Bacaro G, Angiolini C (2014) Phenology of Dryopteris affinis ssp. affinis and Polystichum aculeatum: modeling relationships to the climatic variables in a Mediterranean area. Plant Spec Biol 29:129–137. https://doi.org/10.1111/1442-1984.12000

    Article  Google Scholar 

  • Le Stradic S, Buisson E, Fernandes GW, Morellato LPC (2018) Reproductive phenology of two co-occurring Neotropical mountain grasslands. J Veg Sci 29:15–24. https://doi.org/10.1111/jvs.12596

    Article  Google Scholar 

  • Lee PH, Huang YM, Chiou WL (2008) The phenology of Osmunda claytoniana L. in the Tataka area, central Taiwan. Taiwan J For Sci 23:71–79

    Google Scholar 

  • Lee PH, Chiou WL, Huang YM (2009) Phenology of three Cyathea (Cyatheaceae) ferns in northern Taiwan. Taiwan J For Sci 24:233–242

    Google Scholar 

  • Marques MCM (2007) Fenologia no limite sul da região tropical: padrões e algumas interpretações. In: Rego GM, Negrelle RRB, Morellato LPC. Fenologia: ferramenta para conservação, melhoramento e manejo de recursos vegetais arbóreos. Embrapa Florestas, Colombo, pp 101–112

    Google Scholar 

  • Mehltreter K (2006) Leaf phenology of the climbing fern Lygodium venustum in a semideciduous lowland forest on the Gulf of Mexico. Am Fern J 96:21–30

    Article  Google Scholar 

  • Mehltreter K, Garcia-Franco JG (2008) Leaf phenology and trunk growth of the deciduous tree fern Alsophila firma (Baker) D. S. Conant in a lower montane Mexican forest. Am Fern J 98:1–13

    Article  Google Scholar 

  • Mendoza I, Peres CA, Morellato LPC (2017) Continental-scale patterns and climatic drivers of fruiting phenology: a quantitative Neotropical review. Glob Planet Chang 148:227–241. https://doi.org/10.1016/j.gloplacha.2016.12.001

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnely A, Filella Y, Jatczak K, Mage F, Mestre A, Nordli O, Peñuelas J, Pirinen P, Remisová V, Scheifinger H, Striz M, Susnik A, Vliet A, Wielgolaski F, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976. https://doi.org/10.2307/2403858

    Article  Google Scholar 

  • Milton SJ, Moll EJ (1988) Effects of harvesting on frond production of Rumohra adiantiformis (Pteridophyta: Aspidiaceae) in South Africa. J Appl Ecol 25:725–743

    Article  Google Scholar 

  • MMA/ SBF (2002) Ministério do Meio Ambiente e Secretaria de Biodiversidade e Florestas. Avaliação e identificação de áreas e ações prioritárias para a conservação, utilização sustentável e repartição dos benefícios da biodiversidade nos biomas brasileiros. MMA/SBF, Brasília, p 404p

    Google Scholar 

  • Morellato LPC, Talora DC, Takahasi A, Bencke CC, Romera EC, Zipparro VB (2000) Phenology of Atlantic rain forest trees: a comparative study. Biotropica 32:811–823

    Article  Google Scholar 

  • Morellato LPC, Alberti LF, Hudson IL (2010) Applications of circular statistics in plant phenology: a case studies approach. In Keatley M, Hudson IL (org) Phenological research: methods for environmental and climate change analysis. Dordrecht, the Netherlands: Springer, 357–371. https://doi.org/10.1007/978-90-481-3335-2_16

  • Morellato LPC, Camargo MGG, Gressler E (2013) A review of plant phenology in south and Central America. In: Schwartz MD (ed) Phenology: an integrative environmental science. Springer, Dordrecht, pp 91–113. https://doi.org/10.1007/978-94-007-6925-0

  • Morellato LPC, Alberton B, Alvarado ST, Borges B, Buisson E, Camargo MGG, Cancian LF, Carstensen DW, Escobar DFE, Leite PTP, Mendoza I, Rocha NMWB, Soares NC, Silva TSF, Staggemeier VG, Streher AS, Vargas BC, Peres CA (2016) Linking plant phenology to conservation biology. Biol Conserv 195:60–72. https://doi.org/10.1016/j.biocon.2015.12.033

    Article  Google Scholar 

  • Müller A, Schmitt JL (2018) Phenology of Guarea macrophylla Vahl (Meliaceae) in subtropical riparian forest in southern Brazil. Braz J Biol 78:187–194. https://doi.org/10.1590/1519-6984.14615

    Article  Google Scholar 

  • Müller A, Cunha S, Junges F, Schmitt JL (2016) Efeitos climáticos sobre a fenologia de Lindsaea lancea (L.) Bedd. (Lindsaeaceae) em fragmento de floresta Atlântica no sul do Brasil. Interciencia 41:34–39

    Google Scholar 

  • Nagano T, Suzuki E (2007) Leaf demography and growth pattern of the tree fern Cyathea spinulosa in Yakushima Island. Tropics 16:47–57. https://doi.org/10.3759/tropics.16.47

    Article  Google Scholar 

  • Neumann MK, Schneider PH, Schmitt JL (2014) Phenology, caudex growth and age estimation of Cyathea corcovadensis (Raddi) Domin (Cyatheaceae) in a subtropical forest in southern Brazil. Acta Bot Bras 28:17–23. https://doi.org/10.1590/S0102-33062014000200014

    Article  Google Scholar 

  • Newstrom LE, Frankie GW, Baker HG (1994) A new classification for plant phenology based on flowering patterns in lowland tropical rain forest trees at La Selva, Costa Rica. Biotropica 26:141–159

    Article  Google Scholar 

  • Oikawa S, Hikosaka K, Hirose T, Shiyomi M, Takahashi S, Hori Y (2004) Cost-benefit relationships in fronds emerging at different times in a deciduous fern, Pteridium aquilinum. Can J Bot 82:521–527. https://doi.org/10.1139/b04-026

    Article  Google Scholar 

  • Observatório Nacional - ON (2017) Anuário do Observatório Nacional, Seção B – Nascer, Passagem Meridiana e Ocaso do Sol, Lua e Planetas. http://www.on.br/anuario/secao-b_2017.pdf

  • Opler PA, Frankie GW, Baker HG (1976) Rainfall as a factor in the release, timing and synchronization of anthesis by tropical trees and shrubs. J Biogeogr 3:231–236

    Article  Google Scholar 

  • Osada N, Tokuchi N, Takeda H (2012) Continuous and fluctuating leaf phenology of adults and seedlings of a shade-tolerant emergent tree, Dipterocarpus sublamellatus, in Malaysia. Biotropica 44:618–626. https://doi.org/10.1111/j.1744-7429.2011.00843.x

    Article  Google Scholar 

  • Padoin TOH, Müller A, Schmitt JL (2016) Fenologia de Blechnum acutum (Desv.) Mett. (Blechnaceae) em Floresta Atlântica Subtropical. RBGF 9:1644–1656. https://doi.org/10.5935/1984-2295.20160113

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Koppen-Geiger climate classification. Hydrol Earth Syst Sc 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.https://www.R-project.org/

  • Ranal MA (1995) Estabelecimento de pteridófitas em Mata Mesófila Semidecídua do estado de São Paulo. 3. Fenologia e Sobrevivência dos Indivíduos. Rev Bras Biol 55:777–787

    Google Scholar 

  • Reich PB, Borchert R (1984) Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. J Ecol 72:61–74. https://doi.org/10.2307/2260006

    Article  Google Scholar 

  • Reich PB (1995) Phenology of tropical forests: patterns, causes and consequences. Can J. Bot 73:164–174

  • Rigby RA, Stasinopoulos DM (2005) Generalized additive models for location, scale and shape. Appl Stat 54:507–554. https://doi.org/10.1111/j.1467-9876.2005.00510.x

    Article  Google Scholar 

  • Rigby RA, Stasinopoulos DM (2007) Generalized additive models for location scale and shape (GAMLSS) in R. J Stat Softw 23:1–46. https://doi.org/10.18637/jss.v023.i07

    Article  Google Scholar 

  • Schmitt JL, Windisch PG (2006) Phenological aspects of frond production in Alsophila setosa Kaulf. (Cyatheaceae: Pteridophyta) in southern Brazil. Fern Gazette 17:263–270

    Google Scholar 

  • Schmitt JL, Windisch PG (2007) Estrutura populacional e desenvolvimento da fase esporofítica de Cyathea delgadii Sternb. (Cyatheaceae, Monilophyta) no Sul do Brasil. Acta Bot Bras 21:731–740. https://doi.org/10.1590/S0102-33062007000300019

    Article  Google Scholar 

  • Schmitt JL, Windisch PG (2012) Caudex growth and phenology of Cyathea atrovirens (Langsd. & Fisch.) Domin (Cyatheaceae) in secondary forest, southern Brazil. Braz J Biol 72:397–495. https://doi.org/10.1590/S1519-69842012000200023

    Article  CAS  Google Scholar 

  • Schmitt JL, Schneider PH, Windisch PG (2009) Crescimento do cáudice e fenologia de Dicksonia sellowiana Hook. (Dicksoniaceae) no sul do Brasil. Acta Bot Bras 23:289–291. https://doi.org/10.1590/S0102-33062009000100030

    Article  Google Scholar 

  • Seghieri J, Floret CH, Pontanier R (1995) Plant phenology in relation to water availability: herbaceous and woody species in the savannas of northern Cameroon. J Trop Ecol 11:237−254

    Article  Google Scholar 

  • Sehnem A (1979) Semelhanças e diferenças nas formações florestais do Sul do Brasil. Acta Biol Leopoldensia 1:111−135

    Google Scholar 

  • Sharpe JM, Mehltreter K (2010) Ecological insights from fern population dynamics. In: Mehltreter VK, Walker LR, Sharpe JM (eds) Fern ecology. Cambrigde University Press, Cambridge, pp 61−110

  • Silva VL, Schmitt JL (2015) The effects of fragmentation on Araucaria Forest: analysis of the fern and lycophyte communities at sites subject to different edge conditions. Acta Bot Bras 29:223–230. https://doi.org/10.1590/0102-33062014abb3760

    Article  Google Scholar 

  • Silva IAA, Pereira AFN, Barros ICL (2011) Edge effects on fern community in an Atlantic Forest remnant of Rio Formoso, PE, Brazil. Braz J Biol 71:421–430. https://doi.org/10.1590/S1519-69842011000300011

    Article  CAS  Google Scholar 

  • Silva VL, Mallmann IT, Cunha S, Schmitt JL (2017) Impact of edge effect on the community of epiphytic ferns in Araucaria Forest. RBCIAMB 45:19–32. https://doi.org/10.5327/Z2176-947820170229

    Article  Google Scholar 

  • Smith AR (1972) Comparison of ferns and flowering plant distributions with some evolutionary interpretations for ferns. Biotropica 4:4–9

    Article  Google Scholar 

  • Souza KRS, Alves GD, Barros ICL (2007) Fenologia de Anemia tomentosa (Sav.) Sw. var. anthriscifolia (Schrad.) Mickel em fragmento de Floresta Semidecídua, Nazaré da Mata, Pernambuco, Brasil. Rev Bras Biosci 5:486–488

    Google Scholar 

  • Souza KRMS, Silva IAA, Farias RP, Barros ICL (2013) Fenologia de três espécies de Adiantum L. (Pteridaceae) em fragmento de Floresta Atlântica no estado de Pernambuco, Brasil. Neotrop Biol Conserv 8(2):96–102. https://doi.org/10.4013/nbc.2013.82.05

    Article  Google Scholar 

  • Vianello RL, Alves AR (2012) Meteorologia Básica e Aplicações. Editora UFV, Viçosa

    Google Scholar 

  • Way DA, Montgomery RA (2015) Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ 38:1725–1736. https://doi.org/10.1111/pce.12431

    Article  Google Scholar 

  • Windisch PG, Pereira-Noronha M (1983) Notes on the ecology and development of Plagiogyria fialhoi. Am Fern J 73:79–84

    Article  Google Scholar 

  • Wrege MS, Fritzsons E, Soares MTS, Souza VA (2015) Variáveis climáticas relacionadas aos serviços ambientais: estudo de caso da araucária. In: Parron LM, Garcia JR, Oliveira EB, Brown GG, Prado RB (eds) Serviços ambientais em sistemas agrícolas e florestais do Bioma Mata Atlântica. Embrapa, Brasília, pp 242–247

    Google Scholar 

  • Wright SJ, Van Schaik CP (1994) Light and the phenology of tropical trees. Am Nat 143:192–199

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Feevale University infrastructure.

Funding

This work was financially supported by the Conselho Nacional de Pesquisa (CNPq process no. 409972/2016-9); scholarships granted by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for AM and TOHP, by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS) to MZC, by CNPq to the CSF and JLS is supported by CNPq (PQ-308926/2017-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andressa Müller.

Electronic supplementary material

ESM 1

Partial residual plots of the significant covariates in the best GAMLSS model to activity index. (PDF 107 kb)

ESM 2

Partial residual plots of the significant covariates in the best GAMLSS model to intensity index. (PDF 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Müller, A., Correa, M.Z., Führ, C.S. et al. Neotropical ferns community phenology: climatic triggers in subtropical climate in Araucaria forest. Int J Biometeorol 63, 1393–1404 (2019). https://doi.org/10.1007/s00484-019-01755-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-019-01755-5

Keywords

Navigation