Skip to main content
Log in

Cite this article


When exposed to hot conditions, heat dissipation via an increase in respiration rate (RR) is an important thermoregulatory mechanism for sheep. However, evaluating RR under field conditions is difficult. In cattle, a viable alternative has been to assess panting score (PS); therefore, the objective of this study was to evaluate the relationship between RR and PS to determine if a PS index can be used to evaluate heat load in sheep. One hundred and forty-four Merino wethers (44.02 ± 0.32 kg) were used within a climate-controlled study. The study was replicated twice over 29 days, where each replicate consisted of two treatments: (1) thermoneutral (TN) and (2) hot (HOT). Ambient temperature (TA) and relative humidity (RH) were maintained between 18 and 20 °C and 60 and 70% respectively for the TN treatment. For the HOT treatment, heat load increased steadily over the 29 days. Minimum TA was 22.5 °C and maximum was 38.5 °C, while RH decreased (60 to 30%) as TA increased in the HOT treatment. A comprehensive PS classification was developed by enhancing the current sheep PS index and aligning the descriptors with the current PS index utilized in beef cattle studies. Respiration rate and PS were obtained for each animal at 3-h intervals between 0800 h and 1700 h daily. These data were used to determine the mean RR for each PS, across the study and within the TN and HOT treatments. The relationship between PS and RR was evaluated using a Pearson’s correlation coefficient. Data were also analyzed using a general linear model to determine the impact of PS, posture and animal identification (animal ID) on RR within each PS. Unsurprisingly, RR increased as PS increased, and PS, 0 and RR, 2.5 were 30.7 ± 0.59 and 246.8 ± 12.20 bpm respectively. There was a strong relationship between RR and PS (r = 0.71; P < 0.0001). As RR increased, sheep were more likely to be observed standing (P < 0.001). Mean PS of sheep within the HOT treatment (1.49 ± 0.02) were greater (P = 0.0085) when compared to the TN (1.17 ± 0.02) sheep. Individual animal ID accounted for approximately 7–37% of the variation observed for RR across PS, indicating that animal ID and climatic conditions were influencing RR and PS. These results suggest that the comprehensive PS index described here can be used as a visual appraisal of the heat load status of sheep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others


Download references


The authors would like to thank Allan Lisle for his assistance with statistical analysis. The authors also wish to acknowledge Jarrod C. Lees for his valuable comments and suggestions on improving this manuscript. The authors also wish to acknowledge and offer thanks Meat and Livestock Australia Pty Ltd. for providing the plates used within Fig. 1.


Funding for this study was provided by Meat and Livestock Australia Pty Ltd., North Sydney, NSW, Australia, LiveCorp, North Sydney, NSW, Australia and the Australian Federal Government, Canberra, ACT, Australia.

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. M. Lees.

Ethics declarations

This study was conducted with the approval of The University of Queensland (UQ) animal ethics committee (SAFS/178/13/MLA).

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lees, A.M., Sullivan, M.L., Olm, J.C.W. et al. A panting score index for sheep. Int J Biometeorol 63, 973–978 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: