Skip to main content

The predictability of heat-related mortality in Prague, Czech Republic, during summer 2015—a comparison of selected thermal indices

Abstract

We compared selected thermal indices in their ability to predict heat-related mortality in Prague, Czech Republic, during the extraordinary summer 2015. Relatively, novel thermal indices—Universal Thermal Climate Index and Excess Heat Factor (EHF)—were compared with more traditional ones (apparent temperature, simplified wet-bulb globe temperature (WBGT), and physiologically equivalent temperature). The relationships between thermal indices and all-cause relative mortality deviations from the baseline (excess mortality) were estimated by generalized additive models for the extended summer season (May–September) during 1994–2014. The resulting models were applied to predict excess mortality in 2015 based on observed meteorology, and the mortality estimates by different indices were compared. Although all predictors showed a clear association between thermal conditions and excess mortality, we found important variability in their performance. The EHF formula performed best in estimating the intensity of heat waves and magnitude of heat-impacts on excess mortality on the most extreme days. Afternoon WBGT, on the other hand, was most precise in the selection of heat-alert days during the extended summer season, mainly due to a relatively small number of “false alerts” compared to other predictors. Since the main purpose of heat warning systems is identification of days with an increased risk of heat-related death rather than prediction of exact magnitude of the excess mortality, WBGT seemed to be a slightly favorable predictor for such a system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. ABM (2018) Thermal comfort observations. Bureau of Meterology. Australian Government. Available online: http://www.bom.gov.au/info/thermal_stress. Accessed 5 May 2018

  2. ACSM (1984) Prevention of thermal injuries during distance running. American College of Sports Medicine, Position Stand. Phys Sportsmed 12(7):43–51. https://doi.org/10.1080/00913847.1984.11701899

    Article  Google Scholar 

  3. Åström C, Ebi KL, Langner J, Forsberg B (2015) Developing a heatwave early warning system for Sweden: evaluating sensitivity of different epidemiological modelling approaches to forecast temperatures. Int J Environ Res Public Health 12:254–267. https://doi.org/10.3390/ijerph120100254

    Article  Google Scholar 

  4. Ballester J, Rodó X, Giorgi F (2009) Future changes in Central Europe heat waves expected to mostly follow summer mean warming. Clim Dyn 35:1191–1205. https://doi.org/10.1007/s00382-009-0641-5

    Article  Google Scholar 

  5. Bañuelos-Ruedas F, Camacho CÁ (2011) In: Suvire GO (ed) Methodologies used in the extrapolation of wind speed data at different heights and its impact in the wind energy resource assessment in a region. In: Wind farm—technical regulations, potential estimation and siting assessment. InTech, Rijeka

    Google Scholar 

  6. Bittner MI, Matthies EF, Dalbokova D, Menne B (2014) Are European countries prepared for the next big heat-wave? Eur J Pub Health 24:615–619. https://doi.org/10.1093/eurpub/ckt121

    Article  Google Scholar 

  7. Błażejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2012) Comparison of UTCI to selected thermal indices. Int J Biometeorol 56:515–535. https://doi.org/10.1007/s00484-011-0453-2

    Article  Google Scholar 

  8. Bower D, Mcgregor GR, Hannah M, Sheridan SC (2007) Development of a spatial synoptic classification scheme for western Europe. Int J Climatol 27:2017–2040. https://doi.org/10.1002/joc

    Article  Google Scholar 

  9. Budd G (2008) Wet-bulb globe temperature (WBGT) – its history and its limitations. J Sci Med Sport 11:20–32. https://doi.org/10.1016/j.jsams.2007.07.003

    Article  Google Scholar 

  10. Burkart K, Schneider A, Breitner S, Khan MH, Krämer A, Endlicher W (2011) The effect of atmospheric thermal conditions and urban thermal pollution on all-cause and cardiovascular mortality in Bangladesh. Environ Pollut 159:2035–2043. https://doi.org/10.1016/j.envpol.2011.02.005

    Article  CAS  Google Scholar 

  11. Burkart K, Canário P, Breitner S, Schneider A, Scherber K, Andrade H, Alcoforado MJ, Endlicher W (2013) Interactive short-term effects of equivalent temperature and air pollution on human mortality in Berlin and Lisbon. Environ Pollut 183:54–63. https://doi.org/10.1016/j.envpol.2013.06.002

    Article  CAS  Google Scholar 

  12. Davídkovová H, Plavcová E, Kynčl J, Kyselý J (2014) Impacts of hot and cold spells differ for acute and chronic ischaemic heart diseases. BMC Public Health 14:480. https://doi.org/10.1186/1471-2458-14-480

    Article  Google Scholar 

  13. de’Donato FK, Stafoggia M, Rognoni M, Poncino S, Caranci N, Bisanti L, Demaria M, Forastiere F, Michelozzi P, Pelosini R, Perucci CA (2008) Airport and city-centre temperatures in the evaluation of the association between heat and mortality. Int J Biometeorol 52:301–310. https://doi.org/10.1007/s00484-007-0124-5

    Article  Google Scholar 

  14. de’Donato FK, Leone M, Scortichini M et al (2015) Changes in the effect of heat on mortality in the last 20 years in nine European cities. Results from the PHASE project. Int J Environ Res Public Health 12:15567–15583. https://doi.org/10.3390/ijerph121215006

    Article  CAS  Google Scholar 

  15. Di Napoli C, Pappenberger F, Cloke H (2018) Assessing heat-related health risk in Europe via the universal thermal climate index (UTCI). Int J Biometeorol 62:1155–1165. https://doi.org/10.1007/s00484-018-1518-2

    Article  Google Scholar 

  16. Ebi KL, Teisberg TJ, Kalkstein LS, Robinson L, Weiher RF (2004) Heat watch/warning systems save lives: estimated costs and benefits for Philadelphia 1995–1998. Bull Am Meteorol Soc 85:1067–1073

    Article  Google Scholar 

  17. EEA – European Environment Agency (2010) Mapping the impacts of natural hazards and technological accidents in Europe: an overview of the last decade. Technical report No 13/2010. 144 pp. ISBN 978-92-9213-168-5

  18. Epstein Y, Moran DS (2006) Thermal comfort and the heat stress indices. Ind Health 44:388–398. https://doi.org/10.2486/indhealth.44.388

    Article  Google Scholar 

  19. Fischer EM, Oleson KW, Lawrence DM (2012) Contrasting urban and rural heat stress responses to climate change. Geophys Res Lett 39:1–8. https://doi.org/10.1029/2011GL050576

    Article  Google Scholar 

  20. Fouillet A, Rey G, Wagner V, Laaidi K, Empereur-Bissonnet P, le Tertre A, Frayssinet P, Bessemoulin P, Laurent F, de Crouy-Chanel P, Jougla E, Hémon D (2008) Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. Int J Epidemiol 37:309–317. https://doi.org/10.1093/ije/dym253

    Article  CAS  Google Scholar 

  21. Gasparrini A (2011) Distributed lag linear and non-linear models in R: the package dlnm. J Stat Softw 43:1–20. https://doi.org/10.18637/jss.v043.i08

    Article  Google Scholar 

  22. Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, Tobias A, Tong S, Rocklöv J, Forsberg B, Leone M, de Sario M, Bell ML, Guo YLL, Wu CF, Kan H, Yi SM, de Sousa Zanotti Stagliorio Coelho M, Saldiva PHN, Honda Y, Kim H, Armstrong B (2015) Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386:369–375. https://doi.org/10.1016/S0140-6736(14)62114-0

    Article  Google Scholar 

  23. Gasparrini A, Guo Y, Hashizume M, Lavigne E, Tobias A, Zanobetti A, Schwartz JD, Leone M, Michelozzi P, Kan H, Tong S, Honda Y, Kim H, Armstrong BG (2016) Changes in susceptibility to heat during the summer: a multicountry analysis. Am J Epidemiol 183:1027–1036. https://doi.org/10.1093/aje/kwv260

    Article  Google Scholar 

  24. Gasparrini A, Guo Y, Sera F, Vicedo-Cabrera AM, Huber V, Tong S, de Sousa Zanotti Stagliorio Coelho M, Nascimento Saldiva PH, Lavigne E, Matus Correa P, Valdes Ortega N, Kan H, Osorio S, Kyselý J, Urban A, Jaakkola JJK, Ryti NRI, Pascal M, Goodman PG, Zeka A, Michelozzi P, Scortichini M, Hashizume M, Honda Y, Hurtado-Diaz M, Cesar Cruz J, Seposo X, Kim H, Tobias A, Iñiguez C, Forsberg B, Åström DO, Ragettli MS, Guo YL, Wu CF, Zanobetti A, Schwartz J, Bell ML, Dang TN, van DD, Heaviside C, Vardoulakis S, Hajat S, Haines A, Armstrong B (2017) Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet Health 1:e360–e367. https://doi.org/10.1016/S2542-5196(17)30156-0

    Article  Google Scholar 

  25. Gosling SN, McGregor GR, Páldy A (2007) Climate change and heat-related mortality in six cities part 1: model construction and validation. Int J Biometeorol 51:525–540. https://doi.org/10.1007/s00484-007-0092-9

    Article  Google Scholar 

  26. Green HK, Andrews N, Armstrong B, Bickler G, Pebody R (2016) Mortality during the 2013 heatwave in England – how did it compare to previous heatwaves? A retrospective observational study. Environ Res 147:343–349. https://doi.org/10.1016/j.envres.2016.02.028

    Article  CAS  Google Scholar 

  27. Grundstein A, Cooper E (2018) Assessment of the Australian Bureau of Meteorology wet bulb globe temperature model using weather station data. Int J Biometeorol 62:1–9. https://doi.org/10.1007/s00484-018-1624-1

    Article  Google Scholar 

  28. Guo Y, Barnett AG, Tong S (2012) High temperatures-related elderly mortality varied greatly from year to year: important information for heat-warning systems. Sci Rep 2:830. https://doi.org/10.1038/srep00830

    Article  CAS  Google Scholar 

  29. Ha J, Kim H, Hajat S (2011) Effect of previous-winter mortality on the association between summer temperature and mortality in South Korea. Environ Health Perspect 119:542–546. https://doi.org/10.1289/ehp.1002080

    Article  Google Scholar 

  30. Hajat S, Kovats RS, Lachowycz K (2007) Heat-related and cold-related deaths in England and Wales: who is at risk? Occup Environ Med 64:93–100. https://doi.org/10.1136/oem.2006.029017

    Article  CAS  Google Scholar 

  31. Hajat S, Sheridan SC, Allen MJ, Pascal M, Laaidi K, Yagouti A, Bickis U, Tobias A, Bourque D, Armstrong BG, Kosatsky T (2010) Heat-health warning systems: a comparison of the predictive capacity of different approaches to identifying dangerously hot days. Am J Public Health 100:1137–1144

    Article  Google Scholar 

  32. Hastie T, Tibshirani R, Leisch F, Hornik K, Ripley BD (2016) Mda: Mixture and flexible discriminant analysis. R Package Version 0.4-9. Stanford University, Stanford Available online: https://cran.r-project.org/web/packages/mda/index.html. Accessed 20 Mar 2017

    Google Scholar 

  33. Hondula DM, Georgescu M, Balling RC (2014a) Challenges associated with projecting urbanization-induced heat-related mortality. Sci Total Environ 490:538–544. https://doi.org/10.1016/j.scitotenv.2014.04.130

    Article  CAS  Google Scholar 

  34. Hondula DM, Vanos JK, Gosling SN (2014b) The SSC: a decade of climate-health research and future directions. Int J Biometeorol 58:109–120. https://doi.org/10.1007/s00484-012-0619-6

    Article  CAS  Google Scholar 

  35. Hondula DM, Balling RC, Andrade R, Scott Krayenhoff E, Middel A, Urban A, Georgescu M, Sailor DJ (2017) Biometeorology for cities. Int J Biometeorol 61:59–69. https://doi.org/10.1007/s00484-017-1412-3

    Article  Google Scholar 

  36. Höppe P (1999) The physiological equivalent temperature, a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43:71–75

    Article  Google Scholar 

  37. Hůnová I, Brabec M, Malý M, Knobová V, Braniš M (2017) Major heat waves of 2003 and 2006 and health outcomes in Prague. Air Qual Atmos Health 10:183–194. https://doi.org/10.1007/s11869-016-0419-y

    Article  CAS  Google Scholar 

  38. Huszár P, Halenka T, Belda M et al (2014) Regional climate model assessment of the urban land-surface forcing over Central Europe. Atmos Chem Phys 14:12393–12413. https://doi.org/10.5194/acp-14-12393-2014

    Article  CAS  Google Scholar 

  39. IPCC (2014) In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Summary for policymakers. In: Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 1–32

    Google Scholar 

  40. ISO 7243 (1989) Hot Environments; Estimation of the heat stress on working man, basedon theWBGT-index (wet bulb globe temperature). International Organisation for Standardisation, Geneva

    Google Scholar 

  41. Jendritzky G, de Dear R, Havenith G (2012) UTCI--why another thermal index? Int J Biometeorol 56:421–428. https://doi.org/10.1007/s00484-011-0513-7

    Article  Google Scholar 

  42. Kántor N, Unger J (2011) The most problematic variable in the course of human-biometeorological comfort assessment — the mean radiant temperature. Cent Eur J Geosci 3:90–100. https://doi.org/10.2478/s13533-011-0010-x

    Article  Google Scholar 

  43. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  44. Kovats RS, Ebi KL (2006) Heatwaves and public health in Europe. Eur J Pub Health 16:592–599. https://doi.org/10.1093/eurpub/ckl049

    Article  Google Scholar 

  45. Kyselý J (2004) Mortality and displaced mortality during heat waves in the Czech Republic. Int J Biometeorol 49(2):91–97. https://doi.org/10.1007/s00484-004-0218-2

    Article  Google Scholar 

  46. Kyselý J, Kříž B (2008) Decreased impacts of the 2003 heat waves on mortality in the Czech Republic: an improved response? Int J Biometeorol 52:733–745. https://doi.org/10.1007/s00484-008-0166-3

    Article  Google Scholar 

  47. Kyselý J, Pokorná L, Kynčl J, Kříž B (2009) Excess cardiovascular mortality associated with cold spells in the Czech Republic. BMC Public Health 9:19. https://doi.org/10.1186/1471-2458-9-19

    Article  Google Scholar 

  48. Kyselý J, Huth R, Kim J (2010) Evaluating heat-related mortality in Korea by objective classifications of “air masses”. Int J Climatol 30:1484–1501. https://doi.org/10.1002/joc.1994

    Article  Google Scholar 

  49. Kyselý J, Plavcová E, Davídkovová H, Kynčl J (2011) Comparison of hot and cold spell effects on cardiovascular mortality in individual population groups in the Czech Republic. Clim Res 49:113–129. https://doi.org/10.3354/cr01014

    Article  Google Scholar 

  50. Lhotka O, Kyselý J (2015) Hot Central-European summer of 2013 in a long-term context. Int J Climatol 35:4399–4407. https://doi.org/10.1002/joc.4277

    Article  Google Scholar 

  51. Lhotka O, Kyselý J, Farda A (2018) Climate change scenarios of heat waves in Central Europe and their uncertainties. Theor Appl Climatol 131:1043–1054. https://doi.org/10.1007/s00704-016-2031-3

    Article  Google Scholar 

  52. Lowe D, Ebi KL, Forsberg B (2011) Heatwave early warning systems and adaptation advice to reduce human health consequences of heatwaves. Int J Environ Res Public Health 8:4623–4648. https://doi.org/10.3390/ijerph8124623

    Article  Google Scholar 

  53. Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43:76–84

    Article  CAS  Google Scholar 

  54. Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51:323–334. https://doi.org/10.1007/s00484-006-0061-8

    Article  Google Scholar 

  55. Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments—basics of the RayMan model. Int J Biometeorol 54:131–139. https://doi.org/10.1007/s00484-006-0061-8

    Article  Google Scholar 

  56. McGregor GR (2011) Human biometeorology. Prog Phys Geogr 36:93–109. https://doi.org/10.1177/0309133311417942

    Article  Google Scholar 

  57. McGregor GR, Bessemoulin P, Ebi KL, Menne B (2015) Heatwaves and health: guidance on warning-system development; World Meteorological Organization: Geneva, Switzerland; World Health Organization: Geneva, Switzerland, 2015, ISBN 978-92-63-11142-5

  58. Morabito M, Profili F, Crisci A, Francesconi P, Gensini GF, Orlandini S (2012) Heat-related mortality in the Florentine area (Italy) before and after the exceptional 2003 heat wave in Europe: an improved public health response? Int J Biometeorol 56:801–810. https://doi.org/10.1007/s00484-011-0481-y

    Article  Google Scholar 

  59. Morabito M, Crisci A, Messeri A, Capecchi V, Modesti PA, Gensini GF, Orlandini S (2014) Environmental temperature and thermal indices: what is the most effective predictor of heat-related mortality in different geographical contexts? Sci World J Article ID 961750. https://doi.org/10.1155/2014/961750

  60. Muthers S, Laschewski G, Matzarakis A (2017) The summers 2003 and 2015 in South-West Germany: heat waves and heat-related mortality in the context of climate change. Atmosphere (Basel) 8. https://doi.org/10.3390/atmos8110224

  61. Nairn JR, Fawcett RJB (2015) The excess heat factor: a metric for heatwave intensity and its use in classifying heatwave severity. Int J Environ Res Public Health 12:227–253. https://doi.org/10.3390/ijerph120100227

    Article  Google Scholar 

  62. Nastos PT, Matzarakis A (2011) The effect of air temperature and human thermal indices on mortality in Athens, Greece. Theor Appl Climatol 108:591–599. https://doi.org/10.1007/s00704-011-0555-0

    Article  Google Scholar 

  63. Novák J, Nemeškal J (2016) Průměrný denní čas strávený v Praze 2014. Specializovaná mapa. (Map of the average time spent in Prague in 2014) [in Czech language]. Department of social geography and regional development, Faculty of Science, Charles University in Prague. Available online: http://www.atlasobyvatelstva.cz/cs/prumerny-denni-cas-straveny-v-praze-2014. Accessed 20 Mar 2018

  64. O’Neill MS, Hajat S, Zanobetti A, Ramirez-Aguilar M, Schwartz J (2005) Impact of control for air pollution and respiratory epidemics on the estimated associations of temperature and daily mortality. Int J Biometeorol 50:121–129. https://doi.org/10.1007/s00484-005-0269-z

    Article  Google Scholar 

  65. Palecki MA, Changnon SA, Kunkel KE (2001) The nature and impacts of the July 1999 heat wave in the Midwestern United States: learning from the lessons of 1995. Bull Am Meteorol Soc 82:1353–1367

    Article  Google Scholar 

  66. Pascal M, Laaidi K, Ledrans M, Baffert E, Caserio-Schönemann C, le Tertre A, Manach J, Medina S, Rudant J, Empereur-Bissonnet P (2006) France’s heat health watch warning system. Int J Biometeorol 50:144–153. https://doi.org/10.1007/s00484-005-0003-x

    Article  Google Scholar 

  67. Peng RD, Dominici F (2008) Statistical methods for environmental epidemiology with R. Springer-Verlag, New York ISBN 978-0-387-78166-2. 144 pp

    Google Scholar 

  68. Petitti DB, Hondula DM, Yang S, Harlan SL, Chowell G (2016) Multiple trigger points for quantifying heat-health impacts: new evidence from a hot climate. Environ Health Perspect 124:176–183. https://doi.org/10.1289/ehp.1409119

    Article  Google Scholar 

  69. Putnam H, Hondula DM, Urban A, Berisha V, Iñiguez P, Roach M (2018) It’s not the heat, it’s the vulnerability: attribution of the 2016 spike in heat-associated deaths in Maricopa County, Arizona. Environ Res Lett 13:094022. https://doi.org/10.1088/1748-9326/aadb44

    Article  Google Scholar 

  70. Qiao Z, Guo Y, Yu W, Tong S (2015) Assessment of short- and long-term mortality displacement in heat-related deaths in Brisbane, Australia, 1996–2004. Environ Health Perspect 123:766–772. https://doi.org/10.1289/ehp.1307606

    Article  Google Scholar 

  71. Ragettli MS, Vicedo-Cabrera AM, Schindler C, Röösli M (2017) Exploring the association between heat and mortality in Switzerland between 1995 and 2013. Environ Res 158:703–709. https://doi.org/10.1016/j.envres.2017.07.021

    Article  CAS  Google Scholar 

  72. Rohat G (2018) Projecting drivers of human vulnerability under the shared socioeconomic pathways. Int J Environ Res Public Health 15:554. https://doi.org/10.3390/ijerph15030554

    Article  Google Scholar 

  73. Ruuhela R, Hyvärinen O, Jylhä K (2018) Regional assessment of temperature-related mortality in Finland. Int J Environ Res Public Health 15:406. https://doi.org/10.3390/ijerph15030406

    Article  Google Scholar 

  74. Saha MV, Davis RE, Hondula DM (2014) Mortality displacement as a function of heat event strength in 7 us cities. Am J Epidemiol 179:467–474. https://doi.org/10.1093/aje/kwt264

    Article  Google Scholar 

  75. Scalley BD, Spicer T, Jian L, Xiao J, Nairn J, Robertson A, Weeramanthri T (2015) Responding to heatwave intensity: excess heat factor is a superior predictor of health service utilisation and a trigger for heatwave plans. Aust N Z J Public Health 39:582–587. https://doi.org/10.1111/1753-6405.12421

    Article  Google Scholar 

  76. Sheridan SC (2002) The redevelopment of a weather-type classification scheme for North America. Int J Climatol 22:51–68

    Article  Google Scholar 

  77. Sheridan SC, Kalkstein LS (2004) Progress in heat watch-warning system technology. Bull Am Meteorol Soc 85:1931–1942

    Article  Google Scholar 

  78. Stafoggia M, Forastiere F, Michelozzi P, Perucci CA (2009) Summer temperature-related mortality. Epidemiology 20:575–583. https://doi.org/10.1097/EDE.0b013e31819ecdf0

    Article  Google Scholar 

  79. Steadman RG (1984) A universal scale of apparent temperature. J Appl Meteorol Climatol 23:1674–1687

    Article  Google Scholar 

  80. Steadman RG (1994) Norms of apparent temperature in Australia. Aust Meteorol Mag 43:1–16

    Google Scholar 

  81. Toloo GS, Fitzgerald G, Aitken P et al (2013) Are heat warning systems effective? Environ Health 12:27. https://doi.org/10.1186/1476-069X-12-27

    Article  Google Scholar 

  82. Urban A, Kyselý J (2014) Comparison of UTCI with other thermal indices in the assessment of heat and cold effects on cardiovascular mortality in the Czech Republic. Int J Environ Res Public Health 11:952–967. https://doi.org/10.3390/ijerph110100952

    Article  Google Scholar 

  83. Urban A, Kyselý J (2018) Application of spatial synoptic classification in evaluating links between heat stress and cardiovascular mortality and morbidity in Prague, Czech Republic. Int J Biometeorol 62:85–96. https://doi.org/10.1007/s00484-015-1055-1

    Article  Google Scholar 

  84. Urban A, Davídkovová H, Kyselý J (2014) Heat- and cold-stress effects on cardiovascular mortality and morbidity among urban and rural populations in the Czech Republic. Int J Biometeorol 58:1057–1068. https://doi.org/10.1007/s00484-013-0693-4

    Article  Google Scholar 

  85. Urban A, Burkart K, Kyselý J, Schuster C, Plavcová E, Hanzlíková H, Štěpánek P, Lakes T (2016) Spatial patterns of heat-related cardiovascular mortality in the Czech Republic. Int J Environ Res Public Health 13:284. https://doi.org/10.3390/ijerph13030284

    Article  Google Scholar 

  86. Urban A, Hanzlíková H, Kyselý J, Plavcová E (2017) Impacts of the 2015 heat waves on mortality in the Czech Republic – a comparison with previous heat waves. Int J Environ Res Public Health 14:1–19. https://doi.org/10.3390/ijerph14121562

    Article  Google Scholar 

  87. Vaneckova P, Neville G, Tippett V, Aitken P, FitzGerald G, Tong S (2011) Do biometeorological indices improve modeling outcomes of heat-related mortality? J Appl Meteorol Climatol 50(6):1165–1176. https://doi.org/10.1175/2011JAMC2632.1

    Article  Google Scholar 

  88. Vicedo-Cabrera A, Ragettli M, Schindler C, Röösli M (2016) Excess mortality during the warm summer of 2015 in Switzerland. Swiss Med Wkly:1–12. https://doi.org/10.4414/smw.2016.14379

  89. Weihs P, Staiger H, Tinz B, Batchvarova E, Rieder H, Vuilleumier L, Maturilli M, Jendritzky G (2012) The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from measured and observed meteorological data. Int J Biometeorol 56:537–555. https://doi.org/10.1007/s0048-011-0416-7.

    Article  Google Scholar 

  90. Weisskopf MG, Anderson HA, Foldy S, Hanrahan LP, Blair K, Török TJ, Rumm PD (2002) Heat wave morbidity and mortality, Milwaukee, Wis, 1999 vs 1995: an improved response? Am J Public Health 92:830–833

    Article  Google Scholar 

  91. Wilks DS (1995) Statistical methods in the atmospheric sciences: an introduction. Academic, London 467 pp

    Google Scholar 

  92. Wood SN (2006) Generalized additive models: an introduction. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  93. Yaglou CP, Minard D (1957) Control of heat casualties at military training centers. AMA Arch Ind Health 16:302–316

    CAS  Google Scholar 

  94. Yahia MW, Johansson E (2013) Evaluating the behaviour of different thermal indices by investigating various outdoor urban environments in the hot dry city of Damascus, Syria. Int J Biometeorol 57:615–630. https://doi.org/10.1007/s00484-012-0589-8

    Article  Google Scholar 

  95. Yang W, Wong NH, Zhang G (2013) A comparative analysis of human thermal conditions in outdoor urban spaces in the summer season in Singapore and Changsha, China. Int J Biometeorol 57:895–907. https://doi.org/10.1007/s00484-012-0616-9

    Article  Google Scholar 

  96. Žák M et al (2016) Pilot actions in European cities – Prague. In: Musco F (ed) Counteracting Urban Heat Island effects in a global climate change scenario. Springer, Cham ISBN-978-3-319-10424-9. 265 pp

    Google Scholar 

  97. Zhang K, Rood RB, Michailidis G, Oswald EM, Schwartz JD, Zanobetti A, Ebi KL, O'Neill MS (2012) Comparing exposure metrics for classifying “dangerous heat” in heat wave and health warning systems. Environ Int 46:23–29. https://doi.org/10.1016/j.envint.2012.05.001

    Article  Google Scholar 

  98. Zhang K, Chen Y-H, Schwartz JD, Rood RB, O’Neill MS (2014) Using forecast and observed weather data to assess performance of forecast products in identifying heat waves and estimating heat wave effects on mortality. Environ Health Perspect 122(9):912–918. https://doi.org/10.1289/ehp.1306858

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Bohumír Kříž and Jan Kynčl, National Institute of Public Health, for preparing epidemiological datasets, and Andreas Matzarakis, the German Meteorological Service in Freiburg, for kindly providing the RayMan Pro software. Data were provided by the Institute of Health Information and Statistics, the Czech Statistical Office, and the Czech Hydrometeorological Institute. This study was partly elaborated during Aleš Urban’s research stay at the School of Geographical Science & Urban Planning, Arizona State University. We acknowledge the excellent working conditions and support provided by the institute.

Funding

Aleš Urban, Hana Hanzlíková and Jan Kyselý were supported by the Czech Science Foundation, project no. 18-22125S. Aleš Urban was also supported by the Czech Academy of Sciences Programme for Research and Mobility Support of Starting Researchers, project no. MSM100421604. David M. Hondula was supported by the NSF Cooperative Agreement 1444758 and NSF Award 1520803.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aleš Urban.

Electronic supplementary material

ESM 1

(DOC 220 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Urban, A., Hondula, D.M., Hanzlíková, H. et al. The predictability of heat-related mortality in Prague, Czech Republic, during summer 2015—a comparison of selected thermal indices. Int J Biometeorol 63, 535–548 (2019). https://doi.org/10.1007/s00484-019-01684-3

Download citation

Keywords

  • Heat
  • Heat-related mortality
  • Heat warning system
  • Thermal indices
  • Central Europe