Skip to main content

Advertisement

Log in

High biodiversity silvopastoral system as an alternative to improve the thermal environment in the dairy farms

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The aim of this work was to evaluate the influence of high biodiversity silvopastoral system (SPSnuclei) on microclimate and thermal comfort index thru a parallel with treeless pasture (TLP) during the four seasons of the year. Three conditions were determined for this study: shadowing area in SPSnuclei, sunny area in SPSnuclei, and sunny area in TLP. During two consecutive days in each season, the following microclimatic variables were collected: air temperature (°C), relative humidity (%), illuminance (lux), wind speed (m/s), and soil surface temperature (°C). The temperature and humidity index (THI) was calculated for each condition as indicative of thermal comfort. An influence analysis was carried out by generalized linear models to evaluate the system effects on the microclimatic variables. A confirmatory analysis was done with Wilcoxon-Mann-Whitney. Systems (SPSnuclei x TLP) influenced the microclimatic variables and THI (p < 0.05). The lowest means of air temperature, illuminance, wind speed, and soil surface temperature were found in SPSnuclei. As expected, autumn and winter presented a comfortable environment even on treeless pastureland. Only the SPSnuclei showed a comfortable environment for dairy production during spring. During summer, the TLP had a microclimate and thermal comfort index not suitable for dairy production already in the first hours of the day (THI between 79 and 85). We concluded that SPSnuclei provided better environment for pasture-based dairy production when compared to TLP. The high THI measured in TLP during summer could be a limiting factor on animal production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ana C, Heck AC, Schimitt Filho AL, Joner F, Simioni GF, Sinisgalli PA (2018) Composição e Distribuição de Formigas como Indicador de Qualidade Ambiental na Pecuária a Base de Pasto: Os Sistemas Silvipastoris com Núcleos. Anais do Encontro Sociedade Latino Americana de Agroecologia. http://www.agroecologia2018.com. Accessed 21 April 2018

  • Ainsworth JAW, Moe SR, Skarpe C (2012) Pasture shade and farm management effects on cow productivity in the tropics. Agric Ecosyst Environ 155:105–110. https://doi.org/10.1016/j.agee.2012.04.005

    Article  Google Scholar 

  • Alemu MM (2016) Ecological benefits of trees as windbreaks and shelterbelts 6:10–13. https://doi.org/10.5923/j.ije.20160601.02

  • Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Zeitschrift 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Alves FV, Nicodemo MLF, Porfírio-da-Silva V (2015) Bem-estar animal em Sistema de Integração Lavoura-Pecuária-Floresta. In: Cordeiro LAM, Vilela L, Kluthcouski J, Marchão RL (eds) Integração Lavoura-Pecuária-Floresta: o produtor pergunta, a Embrapa responde. Brasília, Embrapa, pp 274–287

    Google Scholar 

  • Alvez JP, Schmitt Filho AL, Farley JC, Erickson JD et al (2014) Transition from semi-confinement to pasture-based dairy in Brazil: farmers’ view of economic and environmental performances. Agroecology and Sustainable Food Systems 38:995–1014

    Article  Google Scholar 

  • Baccari Júnior F (2001) Manejo ambiental da vaca leiteira em climas quentes. Editora UEL, Londrina, p 142

    Google Scholar 

  • Baêta FC, Souza CF (1997) Ambiência em edificações rurais - conforto animal. UFV, Viçosa

    Google Scholar 

  • Baêta FC, Souza CF (2010) Ambiência em edificações rurais - conforto animal. UFV, Viçosa

    Google Scholar 

  • Battisti LFZ, Schmitt AL, Loss A, et al (2016) Densidade do solo nos multiplos pontos de sombra do Sistema Voisin Silvipastoril com Núcleos (Voisin SSP+Núcleos). 4th Convención Internacional Agrodesarollo & 11th International Workshop “trees and shrubs in livestock production”. Varadero, Cuba

  • Battisti LFZ, Schmitt Filho AL, Loss A, Sinisgalli PA (2018) Soil chemical attributes in a high biodiversity silvopastoral system. Acta Agron. 67 (3) 451–132. https://doi.org/10.15446/acag.v67n3.70180

  • Blackshaw JK, Blackshaw AW (1994) Heat stress in cattle and the effect of shade on production and behaviour: a review. Aust J Exp Agric 34:285–295. https://doi.org/10.1071/EA9940285

    Article  Google Scholar 

  • Bohmanova J, Misztal I, Cole JB (2007) Temperature-humidity indices as indicators of milk production losses due to heat stress. J Dairy Sci 90:1947–1956. https://doi.org/10.3168/jds.2006-513

    Article  CAS  Google Scholar 

  • Bolaños CAD, Pantoja JCF, Alves AC et al (2014) Qualidade do leite de vacas criadas no sistema silvipastoril no vale do Cauca, Colômbia1. Pesqui Vet Bras 34:134–140. https://doi.org/10.1590/S0100-736X2014000200007

    Article  Google Scholar 

  • Borburema JB, de Souza BB, Cezar MF, Filho JMP (2013) Influência de fatores ambientais sobre a produção e composição físico-química do leite. Agropecuária Científica No Semiárido 9:15–19

    Google Scholar 

  • Brandle JR, Hodges L, Zhou XH (2004) Windbreaks in north American agricultural systems windbreaks in north American agricultural systems. Agrofor Syst 61:65–78

    Google Scholar 

  • Broom DM (2017) Components of sustainable animal production and the use of silvopastoral systems. Rev Bras Zootec 46:683–688. https://doi.org/10.1590/S1806-92902017000800009

    Article  Google Scholar 

  • Broom DM, Galindo FA, Murgueitio E (2013) Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc R Soc B Biol Sci 280:20132025–20132025. https://doi.org/10.1098/rspb.2013.2025

    Article  CAS  Google Scholar 

  • Buratto T, Schmitt Filho, AL, Sinisgalli P, Farley J, (2017) Da produção agroecológica deleite ao Programa de Pagamento para Serviços Ecossistêmicos: a extensão universitária viabilizando a gestão sustentável de agroecossistemas. In anais do II Simpósio Brasileiro de Desenvolvimento Territorial Sustentável SBDTS-UFPR, Matinhos, Paraná

  • Carvalho Filho JLS, Schmitt Filho AL, Fantini AC, Farley J, et al (2016) Matas Ciliares Multifuncionais (MCmult): Quando o agricultor familiar inova na recuperação florestal das áreas ripárias In: 4th Convención Internacional AGRODESARROLLO 2016 & 11th International Workshop ‘Trees and Shrubs in Livestock Production’, Varadero Cuba, 23-30 outubro, 2016. v.1

  • Ceballos MC, Morales AMT, Rivera JE (2011) Efecto de la temperatura y la humedad ambiental sobre el comportamiento de consumo en sistemas silvopastoriles intensivos y posibles implicaciones en el confort térmico. Revista Colombiana De Ciencias Pecuárias 24:365–368

    Google Scholar 

  • Collier RJ, Hall LW, Rungruang S, Zimbleman RB (2012) Quantifying heat stress and its impact on metabolism and performance. Dep Anim Sci Univ Arizona:74–84. https://doi.org/10.1017/S175173111000090X

  • Corbin JD, Holl KD (2012) Applied nucleation as a forest restoration strategy. For Ecol Manag 265:37–46. https://doi.org/10.1016/j.foreco.2011.10.013

    Article  Google Scholar 

  • Craesmeyer KC, Schmitt Filho AL, Hotzel MJ, Diniz M, Farley J (2017) Utilização da Sombra por Vacas Lactantes sob Sistema Voisin Silvipastoril no Sul do Brasil. Cadernos de Agroecologia, [S.l.], v. 11, n. 2

  • Dagang ABK, Nair P (2003) Silvopastoral research and adoption in Central America: recent findings and recommendations for future directions. Agrofor Syst 59:149–155. https://doi.org/10.1007/BF00115736

    Article  Google Scholar 

  • de Aguiar IS, Baccari Júnior F (2003) Respostas fisiológicas e produção de leite de vacas holandesas mantidas ao sol e com acesso a sombra natural. Rev Cient Eletr Med Vet 1(1): 114–118. http://faef.revista.inf.br/imagens_arquivos/arquivos_destaque/GkGEPa9bT6f3OpK_2013-5-13-17-0-17.pdf. Accessed 21 June 2017

  • de Andrade Ferrazza R, Mogollón Garcia HD, Vallejo Aristizábal VH et al (2017) Thermoregulatory responses of Holstein cows exposed to experimentally induced heat stress. J Therm Biol 66:68–80. https://doi.org/10.1016/j.jtherbio.2017.03.014

    Article  Google Scholar 

  • de Souza A, Pavão HG, Lastoria G et al (2010) Um estudo de conforto e desconforto térmico para o Mato Grosso do Sul. Rev Estud Ambient 12:15–25

    Google Scholar 

  • de Souza BB, de Silva GA, da Silva EMN (2016) Índice de conforto térmico para vacas leiteiras em diferentes microrregiões do estado da Paraíba, Brasil. J Anim Behav Biometeorol 4:12–16

    Article  Google Scholar 

  • Deniz M, Schmitt Filho AL, Hötzel MJ et al (2018) The influence of tree nucleus on the distribution of cattle in pasture. SOCLA 2017 CAD Agroecol 13:01–04

    Google Scholar 

  • Equipe Estatcamp (2014) Software Action. Estatcamp - Consultoria em estatística e qualidade. São Carlos - SP, Brasil. URL http://www.portalaction.com.br. Accessed 3 July 2017

  • Ernesto Méndez V, Bacon CM, Cohen R (2013) Agroecology as a transdisciplinary, participatory, and action-oriented approach. Agroecol Sustain Food Syst 37:3–18. https://doi.org/10.1080/10440046.2012.736926

    Article  Google Scholar 

  • Gill M, Smith P, Wilkinson JM (2010) Mitigating climate change: the role of domestic livestock. Animal 4:323–333. https://doi.org/10.1017/S1751731109004662

    Article  CAS  Google Scholar 

  • Huntsinger L, Sulak A, Standiford R, Campos PP (2004) Conservation “matching funds” from working woodlands in California. Silvopastoralism and Sustainable Land Management 1(1):312–318

    Google Scholar 

  • INMET (2009) Normais Climatológicas do Brasil, Instituto Nacional de Meteorologia. BRASÍLIA - DF

  • IPCC (2015) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

  • Jeremias V (2012) Success factors and Constrains of Community based Ecosystem Management: a case study of the voisin rotation grazing system in a rural community in Brazil. Master of Science Thesis in Environmental Systems Analysis, Wageningen University and Research Centre, The Netherlands

  • Jose S (2009) Agroforestry for ecosystem services and environmental benefits: an overview. Agrofor Syst 76:1–10. https://doi.org/10.1007/s10457-009-9229-7

    Article  Google Scholar 

  • Joseph L, Schmitt AL, Fantini AC, et al (2016) O potencial da produção de leite a base de pasto em Sistema Voisin de acordo com os produtores familiares da Capital Catarinense da Agroecologia. 4th Convención Internacional Agrodesarollo & 11th International Workshop “Trees and Shrubs in Livestock Production”. Varadero, Cuba

  • Junior NK, Alves FV, Klosowski ES, et al (2016) Microclima e índices de conforto térmico em sistemas de integração lavoura-pecuária-floresta no município de Campo Grande, Mato Grosso do Sul. Embrapa Gado Corte DOC 225:38. https://doi.org/10.13140/RG.2.2.33155.91685

  • Karvatte N, Klosowski ES, de Almeida RG et al (2016) Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest. Int J Biometeorol 60:1933–1941. https://doi.org/10.1007/s00484-016-1180-5

    Article  Google Scholar 

  • Kastner T, Rivas MJI, Koch W, Nonhebel S (2012) Global changes in diets and the consequences for land requirements for food. Proc Natl Acad Sci 109:6868–6872. https://doi.org/10.1073/pnas.1117054109

    Article  Google Scholar 

  • Kazama R, Roma CF da C, Barbosa OR, et al.(2008) Orientação e sombreamento do confinamento na temperaturada superfície do pelame de bovinos. Acta Sci Anim Sci 30:211–216. https://doi.org/10.4025/actascianimsci.v30i2.4702

  • LeRoy HG, John BG, Terry LM, Roger AE (2009) Chapter 5: thermal indices and their applications for livestock environments. Livest Energ Therm Environ Manag 113–130. https://doi.org/10.13031/2013.28298

  • Luz AMRD (2005) Comportamento dos gases. In:______Curso de Física. Vol. 2, São Paulo, Brazil: Scipione, cap. 11

  • Macedo RC, Schmitt Filho AL, Farley J, Fantini AC, Cazella AA, Sinisgalli P (2018) Land use and land cover mapping in detailed scale: a case study in Santa Rosa de Lima-SC. Boletim de Ciências Geodésicas, 24(2): 217–234. https://doi.org/10.1590/S1982-21702018000200015

  • Méndez VE, Caswell M, Gliessman SR, Cohen R (2017) Integrating agroecology and participatory action research (PAR): lessons from Central America. Sustain 9:1–19. https://doi.org/10.3390/su9050705

    Article  Google Scholar 

  • Mora J, Ibrarim M, Cruz J, Casasola F, Rosales M, Holguin VA (2004) Preliminary analyses of the impact of payment for environmental services on land use changes: a case study on livestock farms in Costa Rica. Silvo Sust Land Manag 1 (1):335–342

  • Murphy W (1998) Greener pasture on your side of the fence: Better farming with Voising Management Intensive Grazing. 4th Edition, Colchester Vermont: Arriba Publishing

  • Nascimento ST, Rossetto YP, Silva AA et al (2017) Influência da temperatura ambiente no verão na produção de leite de vacas holandesas. PubVet 11:217–223. https://doi.org/10.22256/PUBVET.V11N3.217-223Influência

  • National Weather Service (1976) Central Region. Livestock Hot Weather Stress. Regional Operations Manual Letter, C-31-76. National Academy Press, Washington, D.C

    Google Scholar 

  • Nelson GC, Valin H, Sands RD et al (2014) Climate change effects on agriculture: economic responses to biophysical shocks. Proc Natl Acad Sci 111:3274–3279. https://doi.org/10.1073/pnas.1222465110

    Article  CAS  Google Scholar 

  • Nicodemo MLF, Silva VP da, de S.Thiago LRL, et al. (2004) Sistemas silvipastoris - introducao de arvores na pecuaria do Centro Oeste brasileiro. Empresa Brasilelira de Pesquisa Agropecuaria-EMBRAPA. file:///C:/Users/User/Downloads/Sistemas-silvipastorisintroduzido.pdf. Accessed 29 August 2017

  • Oliveira CC, Alves FV, de Almeida RG, et al (2017) Thermal comfort indices assessed in integrated production systems in the Brazilian savannah. Agrofor Syst 1–8. https://doi.org/10.1007/s10457-017-0114-5

  • Paciullo DSC, Pires MFA, Aroeira LJM et al (2014) Sward characteristics and performance of dairy cows in organic grass-legume pastures shaded by tropical trees. Animal 8:1264–1271. https://doi.org/10.1017/S1751731114000767

    Article  CAS  Google Scholar 

  • Reis A, Bechara FC, De Espíndola MB et al (2003) Restauração de áreas degradadas : a nucleação como base para incrementar os processos sucessionais. Nat Conserv 1:28–36

    Google Scholar 

  • Rhoads ML, Rhoads RP, VanBaale MJ et al (2009) Effects of heat stress and plane of nutrition on lactating Holstein cows: I. production, metabolism, and aspects of circulating somatotropin. J Dairy Sci 92:1986–1997. https://doi.org/10.3168/jds.2008-1641

    Article  CAS  Google Scholar 

  • Rodrigues-Luego Y, Campos-Palacin P, Ovando-Pol P (2004) Comparative analysis of the EAA/EAF and AAS agroforestry accounting systems: application to a dehesa estate. Silvopastoralism and Sustainable Land Management 1(1):330–334

    Google Scholar 

  • Rosenberg LJ, Biad BL, Verns SB (1983) Human and animal biometeorology. In: Microclimate, the biological environment. New York: Wiley- Interscience Publication p.423–467

  • Sanin LY, Cabrera AMZ, Morales AMT (2016) Adaptive responses to thermal stress in mammals. Rev Med Vet (Bogota) 31:121–135

    Google Scholar 

  • Schmitt AL, Farley J, (2017) Co-investment in agroecology for ecosystems services in Santa Rosa de Lima, Brazil. 9th Biennal Conference of United States Society for Ecological Economics USSEE. Minnesota USA

  • Schmitt AL, Farley J, Alarcon GG, et al (2013) Integrating agroecology with payments for ecosystem services in Santa Catarina’s Atlantic Forest. In: Gov. Prov. Ecosys. Serv.333–355. https://doi.org/10.1007/978-94-007-5176-7_17

  • Schmitt AL, Fantini AC, Farley J, et al (2017) Nucleation theory inspiring the design of high biodiversity silvopastoral system in the Atlantic Forest biome: ecological restoration, family farm livelihood and agroecology. VII World Conference on Ecological Restorarion – SER, Foz do Iguaço BR

  • Schröter B, Matzdorf B, Sattler C, Garcia Alarcon G (2015) Intermediaries to foster the implementation of innovative land management practice for ecosystem service provision - a new role for researchers. Ecosyst Serv 16:192–200. https://doi.org/10.1016/j.ecoser.2015.10.007

    Article  Google Scholar 

  • Silva AA, Schmitt AL, Fantini AC, et al (2016) Determinação da biomassa e estoque de carbono em Sistema Voisin Silvipastoril com Núcleos (VoisinSSP+Núcleos). 4th Convención Internacional Agrodesarollo & 11th International Workshop “Trees and Shrubs in Livestock Production”. Varadero, Cuba

  • Silva AA, Schmitt Filho AL, Fantini AC, Zambiazi DC, Sinisgalli PA (2018) Estimativas de biomassa e carbono em sistema silvipastoril com núcleos arbóreos (PRVnúcleos). Cadernos de Agroecologia, v.13, n.1. http://cadernos.aba-agroecologia.org.br/index.php/cadernos/article/view/1742. Accessed 21 April 2018

  • Simioni GF, Schmitt Filho, AL, Fantini AC, Moreira APT, et al (2016) Monitoramento bioacústico automatizado da avifauna em sistema Voisin silvipastoril com núcleos (PRVSnúcleo) no Brasil. In: 4th Convención Internacional Agrodesarrollo 2016 & 11th International Workshop ‘Trees and Shrubs in Livestock Production’, Varadero, Cuba, 23-30 outubro, 2016. v.1

  • Solorio FJ, Basu SK, Ayala A, et al (2016) The potential of silvopastoral systems for milk and meat organic production in the tropics. In: Nandwani D (eds) Organic farming for sustainable agriculture. Sustainable development and biodiversity 09. https://doi.org/10.1007/978-3-319-26803-3_8

  • Sousa LF, Mauricio RM, Gonçalves LC et al (2007) Produtividade e valor nutritivo da Brachiaria brizantha cv. Marandu em um Sistema Silvipastoril Arq Bras Med Vet e Zootec 59:1029–1037. https://doi.org/10.1590/S0102-09352007000400032

    Article  Google Scholar 

  • Thom EC 1959 The discomfort index. Weatherwise 12, 57–59. https://www.tandfonline.com/doi/abs/10.1080/00431672.1959.9926960?journalCode=vwws20. Accessed 18 June 2017

  • Thornton PK, van de Steeg J, Notenbaert A, Herrero M (2009) The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agric Syst 101:113–127. https://doi.org/10.1016/j.agsy.2009.05.002

    Article  Google Scholar 

  • West JW (2003) Effects of heat-stress on production in dairy cattle. J Dairy Sci 86:2131–2144. https://doi.org/10.3168/jds.S0022-0302(03)73803-X

    Article  CAS  Google Scholar 

  • Wilhelm LR (1976) Numerical calculation of psychrometric properties in SI units. Trans ASAE 8:318–325. https://doi.org/10.13031/2013.36019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdon L. Schmitt Filho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deniz, M., Schmitt Filho, A.L., Farley, J. et al. High biodiversity silvopastoral system as an alternative to improve the thermal environment in the dairy farms. Int J Biometeorol 63, 83–92 (2019). https://doi.org/10.1007/s00484-018-1638-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-018-1638-8

Keywords

Navigation