International Journal of Biometeorology

, Volume 62, Issue 9, pp 1721–1732 | Cite as

Behaviour of Quercus pollen in the air, determination of its sources and transport through the atmosphere of Mexico City and conurbated areas

  • M. C. Calderón-Ezquerro
  • B. Martinez-Lopez
  • C. Guerrero-Guerra
  • E. D. López-Espinosa
  • W. D. Cabos-Narvaez
Original Paper


Pollen allergies have a remarkable clinical impact all over world. Quercus pollen is the main allergen in many parts of world. Due to the health impacts caused by exposure to oak pollen, the objectives of this study are to characterise the aerobiological behaviour of Quercus pollen and to determine its potential sources as well as their transport through the atmosphere of Mexico City and surrounding areas between January 2012 and June 2015. Airborne Quercus pollen monitoring was carried out simultaneously in five zones of Mexico City. The percentage of Quercus pollen of the total pollen collected from the air showed that the highest concentration was recorded in 2014, followed by 2012. The annual seasonal variation indicated that flowering and pollen emission into the atmosphere began between February and March. The maximum concentration of Quercus pollen was reached at Cuajimalpa. In 2012, the amount of pollen grains was distributed in March and April uniformly, whilst in 2014, the largest amount of pollen was concentrated in March. In 2012 and 2014 (years with the highest pollen concentrations), corresponding intraday variations were quite similar, with a low relative maximum in the morning and the highest concentrations in the evening. The largest values were recorded in 2014, and two processes can explain these. In the afternoon, pollen from secondary forest is carried by southwesterly converging winds, increasing the pollen concentration in Cuajimalpa. In the evening, there is an additional pollen contribution from primary forest via transport by NW winds.


Aerobiology Quercus-pollen Wind convergence Transport Daily cycle 



We thank Ivonn Santiago López, Marisol Olivé Arrioja, Téllez Unzueta Fernando, Tania Robledo Retana, Miguel Angel Meneses, Hilda Adriana Guerrero Parra, Nancy Serrano Silva, Wilfrido Gutiérrez López and Manuel Garcia Espinosa from the Centre of Atmospheric Sciences of UNAM for their technical assistance.


This work was funded by the Secretaría de Ciencia y Tecnología e Innovación de la Ciudad de México (SECITI/PICS012–100/2012 and by SECITI/050/2016); by Instituto Nacional de Ecología y Cambio Climático (INECC/A1–004/2014); by CONACYT-SEMARNAT (2015–1-262680); and Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (IN201109–3, IA100912), UNAM.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

484_2018_1572_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 16 kb)
484_2018_1572_MOESM2_ESM.tiff (1.2 mb)
ESM 2 Figure supplementary material: shows the percentage of Quercus pollen of the annual total pollen of each station and the city as a whole by sampling year. (TIFF 1244 kb)


  1. Andersen TB (1991) A model to predict the beginning of the pollen season. Grana 30:269–275CrossRefGoogle Scholar
  2. Anenberg CS, Weinberger R, Roman H, Neumann J, Crimmins A, Fann N, Martinich J, Kinney P (2017) Impacts of oak pollen on allergic asthma in the United States and potential influence of future climate change. AGU Publications GeoHealth 1:80–92. CrossRefGoogle Scholar
  3. Bassett JI, Crompton CW, Parmelee JA.(1978) An Atlas of airborne pollen grains and common fungus spores of Canada. Que ́bec: Supply and Services CanadaGoogle Scholar
  4. Bianchi M, Olabuenaga S (2006) A 3-year airborne pollen and fungal spores record in San Carlos de Bariloche, Patagonia, Argentina. Aerobiologia 22:247–257CrossRefGoogle Scholar
  5. Bricchi E, Frenguelli G, Mincigrucci G, Fornaciari M, Ferranti F, Romano B (1995) Time linkages between pol- lination onsets of different taxa over an 11-year period in Perugia, Central Italy. Aerobiologia 11:57–61CrossRefGoogle Scholar
  6. Bronillet-Tarragó I (1992) Estudio aeropolínico de la zona norte de la Ciudad de México en un ciclo anual. Tesis de Licenciatura. Facultad de Ciencias. Universidad Nacional Autónoma de México. México, D. FGoogle Scholar
  7. Calderón C, Lacey J, McCartney A, Rosas I (1997) Influence of urban climate upon distribution of airborne Deuteromycete spore concentrations in Mexico City. Int J Biometeorol 40:71–80CrossRefGoogle Scholar
  8. Calderón-Ezquerro M, Guerrero-Guerra C, Martínez-López B, Fuentes-Rojas F, Téllez-Unzueta F, López-Espinoza E, Calderón-Segura M, Martínez-Arroyo A, Trigo-Pérez M (2016) First airborne pollen calendar for Mexico City and its relationship with bioclimatic factors. Aerobiologia 32:225–244CrossRefGoogle Scholar
  9. Challenger A, Soberón J (2008) Los ecosistemas terrestres, en Capital natural de México, vol. I: Conocimiento actual de la biodiversidad. Conabio, MéxicoGoogle Scholar
  10. Duso M, Duso L, de Antoni Zoppas B, González M, Barrera R (2007) Airborne pollen calendar of Caxias do Sul (Rio Grande do Sul, Brazil), 2001-2002. Polen 17:51–65Google Scholar
  11. Dvorin D, Lee J, Belecanech G, Goldstein M, Dunsky E (2001) A comparative, volumetric survey of airborne pollen in Philadelphia, Pennsylvania (1991-1997) and Cherry Hill, New Jersey (1995-1997). Ann Allergy Asthma Immunol 87:394–404CrossRefGoogle Scholar
  12. Eder W, Markus J, von Mutius E (2006) The asthma epidemic. N Engl J Med 355:2226–2235CrossRefGoogle Scholar
  13. Erdtman G (1952) Pollen morphology and plant taxonomy, angiosperms. Stockholm: Almqvist and WiksellGoogle Scholar
  14. Estrada F, Martínez-Arroyo A, Fernández-Eguiarte A, Luyando E, Gay C (2009) Defining climate zones in Mexico City using multivariate analysis. Atmosfera 22:175–193Google Scholar
  15. Fernández-González D, Valencia-Barrera R, Vega A, Díaz de la Guardia C, Trigo M, Cariñanos P, Guardia A, Pertiñez C, Rodríguez-Rajo F (1999) Analysis of grass pollen concentrations in the atmosphere of several spanish sites. Polen 10:123–132Google Scholar
  16. Frenguelli G, Bricchi E, Romano B, Mincigrucci G, Ferranti F, Antognozzi E (1992) The role of air temperature in determining dormancy release and flowering of Corylus avellana L. Aerobiologia 8:415–418CrossRefGoogle Scholar
  17. Frías-De León M, Duarte-Escalante E, Calderón-Ezquerro C, Jiménez-Martínez M, Acosta-Altamirano G, Moreno-Eutimio M, Reyes-Montes M (2016) Diversity and characterization of airborne bacteria at two health institutions. Aerobiologia 32:187–198CrossRefGoogle Scholar
  18. Galán C, Cariñanos P, Alcázar, P, Dominguez-Vilches E (2007) Spanish aerobiology network (REA) management and quality manual. Córdoba: Servicio de Publicaciones Universidad de CórdobaGoogle Scholar
  19. Galán C, Cariñanos P, García-Mozo H, Alcázar P, Domínguez-Vilches E (2001) Model for forecasting Olea europaea L. airborne pollen in south-West Andalucia, Spain. Int J Biometeorol 45:59–63CrossRefGoogle Scholar
  20. García-Mozo H, Dominguez-Vilches E, Galán C (2007) Airborne allergenic pollen in a natural áreas Hornachuelos natural park, Córdoba. Southern Spain Ann Agric Environ Med 14:109–110Google Scholar
  21. Galán C, Smith M, Thibaudon M, Frenguelli G, Oteros J, Gehrig R, Berger U, Clot B, Brandao R (2014) Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia 30:385–395. CrossRefGoogle Scholar
  22. Galán C, Ariatti A, Bonini M, Clot B, Crouzy B, Dahl A, Fernandez-González D, Frenguelli G, Gehrig R, Isard S, Levetin E, Li DW, Mandrioli P, Rogers CA, Thibaudon M, Sauliene I, Skjoth C, Smith M, Sofiev M (2017) Recommended terminology for aerobiological studies. Aerobiologia 33:293–295. CrossRefGoogle Scholar
  23. García-Mozo H, Galán C, Gómez-Casero M, Dominguez-Vilchis E (2000) A comparative study of different temperatura accumulation methods for predicting the start of the Quercus pollen season in Cordoba (south West Spain). Grana 39:194–199CrossRefGoogle Scholar
  24. García-Mozo H, Galán C, Jato V, Belmonte J, Díaz de la Guardia C, Fernández D, Gutierrez M, Aira M, Roure J, Ruiz L, Trigo M, Dominguez-Vilches E (2006a) Quercus pollen season dynamics in the Iberian peninsula: response to meteorological parameters and possible consequences of climate change. Ann Agric Environ Med 13:209–224Google Scholar
  25. García-Mozo H, Pérez R, Fernández González F, Galán C (2006b) Airborne pollen sampling in Toledo, Central Spain. Aerobiologia 22:55–66CrossRefGoogle Scholar
  26. Galán C, Tormo CJ, Infante F, Domínguez E (1991) Theoretical daily variation patterns of airborne pollen in the southwest of Spain. Grana 30:201–209CrossRefGoogle Scholar
  27. Gomez-Casero MT, Hidalgp P, García Mozo HF, Domínguez E, Galán C (2004) Pollen biology in four mediterranean Quercus species. Grana 43:1–9CrossRefGoogle Scholar
  28. Hernández-Ceballos MA, García-Mozo H, Adame JA, Domínguez-Vilches E, Bolívar J, De la Morena BA, Galán C (2011) Determination of potential sources of Quercus airborne pollen in Córdoba city (southern Spain) using back-trajectory analysis. Aerobiologia 27:261–276CrossRefGoogle Scholar
  29. INEGI (2005) II conteo de poblacion y vivienda 2005. http://wwwinegiorgmx/est/contenidos/proyectos/ccpv/cpv2005/ Accessed January 2015
  30. INEGI (2010) Mapa digital de México. Información de uso de suelo y vegetación. html. Accessed July 2015
  31. Jato V, Rodriguez-Rajo F, Aira J (2007) Use of Quercus ilex subsp. ballota phenological and pollen production data for interpreting Quercus pollen curves. Aerobiologia 23:91–105CrossRefGoogle Scholar
  32. Jáuregui O (1963) Climatología. En Hidrología de la Cuenca del Valle de México. Comisión hidrológica de la cuenca del valle de México. Secretaría de Recursos Hidráulicos. México, D. FGoogle Scholar
  33. Jáuregui E (2000) El clima de la ciudad de México. Instituto de Geografía, UNAM- Plaza y Valdés. México, 131 pp.Google Scholar
  34. So HJ, Moon SJ, Hwang SY, Kim JH, Jang HJ, Jo JH, Sung TJ, Lim DH (2017) Characteristics of airborne pollen in Incheon and Seoul (2015–2016). Asia Pac Allergy 7:138–147CrossRefGoogle Scholar
  35. Kalnay E (2003) Atmospheric modeling, data assimilation and predictability: United States of America, Cambridge University PressGoogle Scholar
  36. Kapp RO (1969) How to know pollen and spores. WM. In: C: Brown company publishersGoogle Scholar
  37. Köhler W, Schachtel G, Voleske P (2007) Biostatistik Einführung für Biologen und Agrarwissenschaftler. In: Heidelberg: Springer-Verlag BerlinGoogle Scholar
  38. Lacey ME, West JS (2006) The air Spora: a manual for catching and identifying airborne biological particles. Springer, NetherlandsCrossRefGoogle Scholar
  39. Lake IR, Jones NR, Agnew M, Goodess CM, Giorgi F, Hamaoui-Laguel L, Semenov M, Solomon F, Storkey J, Vautard R, Epstein MM (2017) Climate change and future pollen allergy in Europe. Environ Health Perspect 125:385–391CrossRefGoogle Scholar
  40. Linkosalo T, Häkkinen R, Hänninen H (2006) Model of the spring phenology of boreal and temperate trees: is there something missing. Tree Physiol 20:1175–1182CrossRefGoogle Scholar
  41. Moore PD, Webb JA, Collinson ME (1991) Pollen analysis. 2da edicion. Blackwell Scientific Publications, LondonGoogle Scholar
  42. Moreno-Grau S, Angosto J, Elvira-Rendueles B, Bayo J, Moreno J, Moreno-Clavel J (2000) Effects of meteorological parameters and plant distribution on Chenopodiaceae-Amaranthaceae, Quercus and Olea airborne pollen concentrations in the atmosphere of Cartagena (Spain). Aerobiologia 16:17–20CrossRefGoogle Scholar
  43. Pacini E (2008) Pollination. In Jorgensen S, Fath B (eds) Encyclopedia of ecology. 2nd edition. Elsevier 2857 – 2861ppGoogle Scholar
  44. Parrado ZG, Barrera R, Rodriguez C, Maray A, Romero R, Fraile R, Gonzalez D (2009) Alternative statistical methods for interpreting airborne Alder (Alnus glutimosa (L.) Gaertner) pollen. Int J Biometeorol 53:1–9CrossRefGoogle Scholar
  45. Pla-Dalmau JM (1960) Estudios palinológicos y precisiones morfológicas sobre los granos de polen de quinientas especies bota ́nicas del extremo NE de España. PhD thesis. Facultad de Farmacia Universidad de Barcelona, Barcelona, EspañaGoogle Scholar
  46. Recio M, Trigo M, Toro J, Cabezudo B (1999) Incidencia del polen de Quercus en la atmósfera de Málaga y su relación con los parámetros meteorológicos. Acta Bol Malacitana 24:77–88Google Scholar
  47. Ríos B, Torres-Jardón R, Ramírez-Arriaga E, Martínez-Bernal A, Rosas I (2016) Diurnal variations of airborne pollen concentration and the effect of ambient temperature in three sites of Mexico City. Int J Biometeorol 60:771–787CrossRefGoogle Scholar
  48. Rizzi-Longo L, Pizzulin-Sauli M, Ganis P (2005) Aerobiology of Fagaceae pollen in Trieste (NE Italy). Aerobiologia 21:217–231CrossRefGoogle Scholar
  49. Rocha-Estrada A, Alvarado-Vázquez M, Torrres-Cepeda T, Foroughbakhch-Pournavab R (2008) Principales tipos polínicos presentes en el aire de la zona norte del área metropolitana de Monterrey, Nuevo León. Ciencia UANL 11:69–76Google Scholar
  50. Rodriguez-Rajo F, Méndez J, Jato V (2005) Factors affecting pollination ecology of Quercus anempophilious species in north-West Spain. Bot J Linn Soc 149:283–297CrossRefGoogle Scholar
  51. Romano B, Mincigrucci C, Frenguelli G, Bricchi E (1988) Airborne pollen content in the atmosphere of Central Italy (1982-1986). Cell Mol Life Sci 44:625–626CrossRefGoogle Scholar
  52. Rzedowski G, Rzedowski J (2005) Flora fanerogámica del Valle de México. Instituto de Ecología, AC. Y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Pátzcuaro, Michoacán. (Digital Edition: INECOL2010). Accessed December 2014
  53. Salazar-Coria L (1995) Estudio anual de polen atmosférico en la zona sur de la Ciudad de México. Tesis de Licenciatura. Escuela Nacional de Estudios Profesionales Iztacala, Universidad Nacional Autónoma de México. México, D. FGoogle Scholar
  54. Schueler S, Schlünzen KH (2006) Modeling of oak pollen dispersal on the landscape level with a mesoscale atmospheric model. Environ Model Assess 11:179–194CrossRefGoogle Scholar
  55. Schwartz H (2003) Phenology: an integrative environmental science. Kluwer Academic Publishers, NetherlandsCrossRefGoogle Scholar
  56. Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Wang W, Powers J (2008) A description of the advanced research WRF version 3 (No. NCAR/TN-475+ STR). National Center For Atmos Res Boulder Co Mesoscale and Microscale Meteorology DivGoogle Scholar
  57. SMADF (2011) Secretaría del Medio Ambiente del Distrito Federal. Catálogo de especies vegetales producidas en los viveros Nezahualcóyotl y Yecapixtla. Árboles Accesed july 2015
  58. Smith E G (2000) Sampling and identifying allergenic pollen and molds. An illustrated identification manual for air samplers. Texas, USAGoogle Scholar
  59. Sofiev M, Bergmann K (2013) Allergenic pollen: a review of the production, release, distribution and health impacts. Springer, NetherlandsCrossRefGoogle Scholar
  60. Spieksma F, Corden M, Etandt M, Millington W, Nikkels H, Nolard N, Schoenmakers C, Wachter R, de Weger L, Willems R, Emberlin J (2003) Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in western Europe. Aerobiologia 19:171–184CrossRefGoogle Scholar
  61. Tejera L, Beri A (2005) First volumetric airborne pollen sampling in Montevideo City, Uruguay. Aerobiologia 21:33–41CrossRefGoogle Scholar
  62. Tormo-Molina R, Silva Palaciso I, Muñoz Rodríguez A, Gallardo López F (1996) Pollen production in anemophilous trees. Grana 35:38–46CrossRefGoogle Scholar
  63. Torres-Valdos J (2006) Determinación de los agentes principales de polinosis en la Ciudad de México. Tesis de Posgrado. Universidad Nacional Autónoma de México. México D. FGoogle Scholar
  64. Trigo M (2007) El polen en la atmósfera de Vélez-Málaga Concejalía de Medio Ambiente. España: Ayuntamiento de Vélez-MálagaGoogle Scholar
  65. Trigo M, Jato V, Fernández D, Galán C (2008) Atlas aeropalinológico de España. España: Secretariado de publicaciones de la Universidad de LeónGoogle Scholar
  66. Valencia A (2004) Diversidad del género Quercus (Fagaceae) en México. Bol Soc Bot Méx 75:33–53Google Scholar
  67. Varela M, Valdiviesso T (1996) Phenological phases of Quercus suber L. Flowering For Genet 3:93–102Google Scholar
  68. Villegas G, Nolla J (2001) Atmospheric pollen in Santiago, Chile. Grana 40:126–132CrossRefGoogle Scholar
  69. Weryszko-Chmielewska E, Piotrowska K (2004) Airborne pollen calendar of Lublin. Poland Ann Agric Environ Med 11:91–97Google Scholar
  70. Wozniak M, Steiner A (2017) A prognostic pollen emissions model for climate models (PECM1.0). Geosci Model Dev 10:4105–4127CrossRefGoogle Scholar
  71. Yang C, Song J, Marshal A, Bradley G, Wilson Z (2009) Establishing regulatory models for anther endothecium development and the regulation of dehiscence. In: 20th International Conference on Arabidopsis Research Edinburgh, UKGoogle Scholar

Copyright information

© ISB 2018

Authors and Affiliations

  • M. C. Calderón-Ezquerro
    • 1
  • B. Martinez-Lopez
    • 1
  • C. Guerrero-Guerra
    • 1
  • E. D. López-Espinosa
    • 1
  • W. D. Cabos-Narvaez
    • 2
  1. 1.Centro de Ciencias de la Atmósfera, Av. Universidad N 3000Universidad Nacional Autónoma De MéxicoCoyoacánMexico
  2. 2.Universidad de AlcaláMadridSpain

Personalised recommendations