Skip to main content

Respiratory hospital admissions and weather changes: a retrospective study in Charlottesville, Virginia, USA

Abstract

In most midlatitude locations, human morbidity and mortality are highly seasonal, with winter peaks driven by respiratory disease and associated comorbidities. But the transition between high and low mortality/morbidity months varies spatially. We use a measure of the thermal biophysical strain imposed on the respiratory system—the Acclimatization Thermal Strain Index (ATSI)—to examine respiratory hospital admissions in Charlottesville, VA. Daily respiratory admissions to the University of Virginia over a 19-year period are compared to ATSI values derived from hourly surface weather data acquired from the Charlottesville airport. Negative ATSI values (associated with transitions from warm (and humid) to cold (and dry) conditions) are related to admission peaks at seasonal and weekly timescales, whereas positive ATSI values (cold to warm) exhibit weaker relationships. This research marks the first application of the ATSI to human morbidity, and results suggest that respiratory strain may account for how people who are acclimated to different climates respond to short-term weather changes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Armstrong LE, Maresh CM (1991) The induction and decay of heat acclimatisation in trained athletes. Sports Med 12(5):302–312. https://doi.org/10.2165/00007256-199112050-00003

    Article  CAS  Google Scholar 

  2. Baile EM, Dahlby RW, Wiggs BR, Pare PD (1985) Role of tracheal and bronchial circulation in respiratory heat exchange. J Appl Physiol 58(1):217–222. https://doi.org/10.1152/jappl.1985.58.1.217

    Article  CAS  Google Scholar 

  3. Cain JB, Livingstone SD, Nolan RW, Keefe AA (1990) Respiratory heat loss during work at various ambient temperatures. Respir Physiol 79(2):145–150. https://doi.org/10.1016/0034-5687(90)90014-P

    Article  CAS  Google Scholar 

  4. Chen G, Zhang Y, Song G, Jiang L, Zhao N, Chen B, Kan H (2007) Is diurnal temperature range a risk factor for acute stroke death? Int J Cardiol 116(3):408–409

    Article  Google Scholar 

  5. Davis RE, Knappenberger PC, Michaels PJ, Novicoff WM (2004) Seasonality of climate–human mortality relationships in US cities and impacts of climate change. Clim Res 26(1):61–76. https://doi.org/10.3354/cr026061

    Article  Google Scholar 

  6. Davis RE, Rossier CE, Enfield KB (2012) The impact of weather on influenza and pneumonia mortality in New York City, 1975–2002: a retrospective study. PLoS One 7(3):e34091. https://doi.org/10.1371/journal.pone.0034091

    Article  CAS  Google Scholar 

  7. Davis RE, Dougherty E, McArthur C, Huang QS, Baker MG (2016) Cold, dry air is associated with influenza and pneumonia mortality in Auckland, New Zealand. Influenza Other Respir Viruses 10(4):310–313. https://doi.org/10.1111/irv.12369

    Article  Google Scholar 

  8. De Arróyabe Hernáez PF (2004) Climate, weather and flu diagnoses incidence in the region of Santander (Northern Spain) during the 1999–2000 epidemic diffusion period. Aerobiologia 20(4):223–228. https://doi.org/10.1007/s10453-004-1186-z

    Article  Google Scholar 

  9. De Freitas CR (1985) Assessment of human bioclimate based on thermal response. Int J Biometeorol 29(2):97–119. https://doi.org/10.1007/BF02189029

    Article  Google Scholar 

  10. De Freitas CR, Ryken MG (1989) Climate and physiological heat strain during exercise. Int J Biometeorol 33(3):157–164. https://doi.org/10.1007/BF01084600

    Article  Google Scholar 

  11. De Freitas CR, Grigorieva EA (2009) The Acclimatization Thermal Strain Index (ATSI): a preliminary study of the methodology applied to climatic conditions of the Russian Far East. Int J Biometeorol 53(4):307–315. https://doi.org/10.1007/s00484-009-0215-6

    Article  Google Scholar 

  12. De Freitas CR, Grigorieva EA (2014) The impact of acclimatization on thermophysiological strain for contrasting regional climates. Int J Biometeorol 58(10):2129–2137. https://doi.org/10.1007/s00484-014-0813-9

    Article  Google Scholar 

  13. De Freitas CR, Grigorieva EA (2015) Role of acclimatization in weather-related human mortality during the transition seasons of autumn and spring in a thermally extreme mid-latitude continental climate. Int J Environ Res Public Health 12(12):14974–14987. https://doi.org/10.3390/ijerph121214962

    Article  CAS  Google Scholar 

  14. Fanger PO (1970). Thermal comfort. Analysis and applications in environmental engineering. Danish Technical Press, Copenhagen

    Google Scholar 

  15. Fuhrmann C (2010) The effects of weather and climate on the seasonality of influenza: what we know and what we need to know. Geography Compass 4(7):718–730. https://doi.org/10.1111/j.1749-8198.2010.00343.x

    Article  Google Scholar 

  16. Graudenz GS, Landgraf RG, Jancar S, Tribess A, Fonseca SG, Faé KC, Kalil J (2006) The role of allergic rhinitis in nasal responses to sudden temperature changes. J Allergy Clin Immunol 118(5):1126–1132. https://doi.org/10.1016/j.jaci.2006.07.005

    Article  Google Scholar 

  17. Greenleaf JE, Kaciuba-Uscilko H (1989) Acclimatization to heat in humans. NASA Technical Memorandum 101011. Ames Research Center Moffett Field, California 43 pp

    Google Scholar 

  18. Höppe P (1981) Temperatures of expired air under varying climatic conditions. Int J Biometeorol 25(2):127–132. https://doi.org/10.1007/BF02184460

    Article  Google Scholar 

  19. Hori S (1978) Index for the assessment of heat tolerance. J Hum Ergol 7(2):135–144

    CAS  Google Scholar 

  20. Hori S (1995) Adaptation to heat. Jpn J Physiol 45(6):921–946. https://doi.org/10.2170/jjphysiol.45.921

    Article  CAS  Google Scholar 

  21. Kaciuba-Uscilko H, Greenleaf JE (1989) Acclimatization to cold in humans. NASA Technical Memorandum 101012. Ames Research Center Moffett Field, California 43 pp

    Google Scholar 

  22. Kalkstein AJ (2013) Regional similarities in seasonal mortality across the United States: an examination of 28 metropolitan statistical areas. PLoS One 8(5):e63971. https://doi.org/10.1371/journal.pone.0063971

    Article  CAS  Google Scholar 

  23. Kampmann B, Brode P, Schutte M et al (2008) Lowering of resting core temperature during acclimation is influenced by exercise stimulus. Eur J Appl Physiol 104:321–327

    Article  Google Scholar 

  24. Latvala JJ, Reijula KE, Clifford PS, Rintamäki H (1995) Cold-induced responses in the upper respiratory tract. Arctic Med Res 54:4–4

    CAS  Google Scholar 

  25. Lim YH, Hong YC, Kim H (2012a) Effects of diurnal temperature range on cardiovascular and respiratory hospital admissions in Korea. Sci Total Environ 417:55–60

    Article  CAS  Google Scholar 

  26. Lim YH, Park AK, Kim H (2012b) Modifiers of diurnal temperature range and mortality association in six Korean cities. Int J Biometeorol 56(1):33–42. https://doi.org/10.1007/s00484-010-0395-0

    Article  Google Scholar 

  27. Liu Y, Guo Y, Wang C, Li W, Lu J, Shen S, Xia H, He J, Qiu X (2015) Association between temperature change and outpatient visits for respiratory tract infections among children in Guangzhou, China. Int J Environ Res Public Health 12(1):439–454. https://doi.org/10.3390/ijerph120100439

    Article  Google Scholar 

  28. Manney GL, Hegglin MI, Daffer WH, Schwartz MJ, Santee ML, Pawson S (2014) Climatology of upper tropospheric–lower stratospheric (UTLS) jets and tropopauses in MERRA. J Clim 27(9):3248–3271. https://doi.org/10.1175/JCLI-D-13-00243.1

    Article  Google Scholar 

  29. Mathew L, Purkayastha SS, Jayashankar A, Nayar HS (1981) Physiological characteristics of cold acclimatization in man. Int J Biometeorol 25(3):191–198. https://doi.org/10.1007/BF02184518

    Article  CAS  Google Scholar 

  30. McFadden ER Jr (1992) Heat and water exchange in human airways. Am Rev Respir Dis 146(5_pt_2):S8–S10. https://doi.org/10.1164/ajrccm/146.5_Pt_2.S8

    Article  Google Scholar 

  31. Mireku N, Wang Y, Ager J, Reddy RC, Baptist AP (2009) Changes in weather and the effects on pediatric asthma exacerbations. Ann Allergy Asthma Immunol 103(3):220–224. https://doi.org/10.1016/S1081-1206(10)60185-8

    Article  Google Scholar 

  32. Reichert TA, Simonsen L, Sharma A, Pardo SA, Fedson DS, Miller MA (2004) Influenza and the winter increase in mortality in the United States, 1959–1999. Am J Epidemiol 160(5):492–502. https://doi.org/10.1093/aje/kwh227

    Article  Google Scholar 

  33. Rosenstein AH, O’daniel M, White S, Taylor K (2009) Medicare’s value-based payment initiatives: impact on and implications for improving physician documentation and coding. Am J Med Qual 24(3):250–258. https://doi.org/10.1177/1062860609332511

    Article  Google Scholar 

  34. Rothnie KJ, Yan R, Smeeth L, Quint JK (2015) Risk of myocardial infarction (MI) and death following MI in people with chronic obstructive pulmonary disease (COPD): a systematic review and meta-analysis. BMJ Open 5(9):e007824. https://doi.org/10.1136/bmjopen-2015-007824

    Article  Google Scholar 

  35. Rusanov VI (1989) Appraisal of meteorological conditions defining human respiration. Bull Russ Acad Med Sci 1:57–60 (in Russian)

    Google Scholar 

  36. Rusanov V (2004) Bioclimate of the Western Siberia Plain. Institute of Atmospheric Optics SB RAS, Tomsk (in Russian)

    Google Scholar 

  37. Saat M, Sirisinghe RG, Singh R, Tochihara Y (2005) Effects of short-term exercise in the heat on thermoregulation, blood parameters, sweat secretion and sweat composition of tropic-dwelling subjects. J Physiol Anthropol Appl Hum Sci 24(5):541–549. https://doi.org/10.2114/jpa.24.541

    Article  Google Scholar 

  38. Shaman J, Kohn M (2009) Absolute humidity modulates influenza survival, transmission, and seasonality. Proc Natl Acad Sci 106:3645–3646

    Article  Google Scholar 

  39. Song G, Chen G, Jiang L, Zhang Y, Zhao N, Chen B, Kan H (2008) Diurnal temperature range as a novel risk factor for COPD death. Respirology 13(7):1066–1069

    Google Scholar 

  40. Togias AG, Naclerio RM, Proud D, Fish JE, Adkinson NF Jr, Kagey-Sobotka A et al (1985) Nasal challenge with cold, dry air results in release of inflammatory mediators. Possible mast cell involvement. J Clin Investig 76(4):1375–1381. https://doi.org/10.1172/JCI112113

    Article  CAS  Google Scholar 

  41. Wernli H, Schwierz C (2006) Surface cyclones in the ERA-40 dataset (1958–2001). Part I: Novel identification method and global climatology. J Atmos Sci 63(10):2486–2507. https://doi.org/10.1175/JAS3766.1

    Article  Google Scholar 

  42. Williams CG, Wyndham CH, Morrison JF (1967) Rate of loss of acclimatization in summer and winter. J Appl Physiol 22(1):21–26. https://doi.org/10.1152/jappl.1967.22.1.21

    Article  CAS  Google Scholar 

  43. Wyndham CH, Rogers GG, Senay LC, Mitchell D (1976) Acclimization in a hot, humid environment: cardiovascular adjustments. J Appl Physiol 40(5):779–785. https://doi.org/10.1152/jappl.1976.40.5.779

    Article  CAS  Google Scholar 

  44. Xu Z, Huang C, Su H, Turner LR, Qiao Z, Tong S (2013) Diurnal temperature range and childhood asthma: a time-series study. Environ Health 12(1):12. https://doi.org/10.1186/1476-069X-12-12

    Article  Google Scholar 

Download references

Acknowledgements

We thank Elena Grigorieva (Russian Academy of Sciences) for her assistance with some of the intricacies of the ATSI calculation, as well as the anonymous reviewers for their careful reading of our initial manuscript. This research is dedicated to the memory of Chris de Freitas (1948–2017), who provided extremely valuable insights and ideas about the calculation, testing, and application of the ATSI.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert E. Davis.

Ethics declarations

Statement of informed consent

For this type of study, formal consent is not required as the subjects were de-identified and examined in aggregate.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davis, R.E., Enfield, K.B. Respiratory hospital admissions and weather changes: a retrospective study in Charlottesville, Virginia, USA. Int J Biometeorol 62, 1015–1025 (2018). https://doi.org/10.1007/s00484-018-1503-9

Download citation

Keywords

  • Acclimatization
  • Respiratory
  • Strain
  • Hospital admissions
  • Weather
  • Seasonality