International Journal of Biometeorology

, Volume 62, Issue 5, pp 823–832 | Cite as

Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil

  • R. Battisti
  • P. C. Sentelhas
  • K. J. Boote
Original Paper


Crop growth models have many uncertainties that affect the yield response to climate change. Based on that, the aim of this study was to evaluate the sensitivity of crop models to systematic changes in climate for simulating soybean attainable yield in Southern Brazil. Four crop models were used to simulate yields: AQUACROP, MONICA, DSSAT, and APSIM, as well as their ensemble. The simulations were performed considering changes of air temperature (0, + 1.5, + 3.0, + 4.5, and + 6.0 °C), [CO2] (380, 480, 580, 680, and 780 ppm), rainfall (− 30, − 15, 0, + 15, and + 30%), and solar radiation (− 15, 0, + 15), applied to daily values. The baseline climate was from 1961 to 2014, totalizing 53 crop seasons. The crop models simulated a reduction of attainable yield with temperature increase, reaching 2000 kg ha−1 for the ensemble at + 6 °C, mainly due to shorter crop cycle. For rainfall, the yield had a higher rate of reduction when it was diminished than when rainfall was increased. The crop models increased yield variability when solar radiation was changed from − 15 to + 15%, whereas [CO2] rise resulted in yield gains, following an asymptotic response, with a mean increase of 31% from 380 to 680 ppm. The models used require further attention to improvements in optimal and maximum cardinal temperature for development rate; runoff, water infiltration, deep drainage, and dynamic of root growth; photosynthesis parameters related to soil water availability; and energy balance of soil-plant system to define leaf temperature under elevated CO2.


Temperature Rainfall Carbon dioxide Solar radiation Future climate scenarios Multi-model ensemble 



The first author would like to thank the São Paulo Research Foundation (FAPESP) for the support to this study through the Ph.D. scholarship (Process N° 2013/05306-0) and the Ph.D. Exchange scholarship (Process N° 2014/09424-0) at the University of Florida. The second author would like to thank the Brazilian Research Council (CNPq) for the support to this study through a research fellowship.

Supplementary material

484_2017_1483_MOESM1_ESM.pdf (277 kb)
ESM 1 (PDF 276 kb)


  1. Alagarswamy G, Boote KJ, Allen LH Jr, Jones JW (2006) Evaluating the CROPGRO-soybean model ability to simulate photosynthesis response to carbon dioxide levels. Agron J 98(1):34–42. CrossRefGoogle Scholar
  2. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728. CrossRefGoogle Scholar
  3. Araya A, Hoogenboom G, Luedeling E, Hadgu KM, Kisekka I (2015) Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia. Agric For Meteorol 214:252–265. CrossRefGoogle Scholar
  4. Asseng S, Ewert F, Rosenzweig C, Hatfield JL, Ruane AC, Boote KJ, Thorburn PJ, Rötter RP, Camm Arano D, Brisson N, Basso B, Martre P, Aggarwal PK, Angulo C, Bertuzzi P, Biernath C, Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant R, Heng L, Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto P, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M, Waha K, Wallach D, White JW, Williams JR, Wolf J (2013) Uncertainty in simulation wheat yield under climate change. Nat Clim Chang 3(9):827–832. CrossRefGoogle Scholar
  5. Bassu S, Brisson N, Durand J-L, Boote KJ, Lizaso J, Jones JW, Rosenzweig C, Ruane AC, Adam M, Baron C, Basso B, Biernath C, Boogaard H, Conijn S, Corbeels M, Deryng D, Sanctis GS, Gayler S, Grassini P, Hatfield J, Hoek S, Izaurralde C, Jongschaap R, Kemanian AR, Kersebaum KC, Kim S-H, Kumar MS, Makowski D, Müller C, Nendel C, Priesack E, Pravia MV, Sau F, Shcherbak I, Tao F, Teixeira E, Timlin D, Waha K (2014) How do various maize crop models vary in their responses to climate change factors? Glob Chang Biol 20(7):2301–2320. CrossRefGoogle Scholar
  6. Battisti R, Sentelhas PC (2014) New agroclimatic approach for soybean sowing dates recommendation: a case study. Revista Brasileira de Engenharia Agrícola e Ambiental 18(11):1149–1156. CrossRefGoogle Scholar
  7. Battisti R, Sentelhas PC, Boote KJ (2017c) Inter-comparison of performance of soybean crop simulation models and their ensemble in Southern Brazil. Field Crop Res 200:28–37. CrossRefGoogle Scholar
  8. Battisti R, Sentelhas PC, Boote KJ, Câmara GMS, Farias JRF, Basso CJ (2017a) Assessment of soybean yield with altered water-related genetic improvement traits under climate change in Southern Brazil. Eur J Agron 83:1–14. CrossRefGoogle Scholar
  9. Battisti R, Parker PS, Sentelhas PC, Nendel C (2017b) Gauging the sources of uncertainty in soybean yield simulations using the MONICA model. Agric Syst 155:9–18. CrossRefGoogle Scholar
  10. Bernacchi CJ, Morgan PB, Ort DR, Long SP (2005) The growth of soybean under free air [CO2] enrichment (FACE) stimulates photosynthesis while decreasing in vivo Rubisco capacity. Planta 220(3):434–446. CrossRefGoogle Scholar
  11. Bernacchi CJ, Kimball BA, Quarles DR, Long SP, Ort DR (2007) Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol 143(1):134–144. CrossRefGoogle Scholar
  12. Bernacchi CJ, Leakey ADB, Heady LE, Morgan PB, Dohleman FG, McGrath JM, Gillespie KM, Wittig VE, Rogers A, Long SP, Ort DR (2006) Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air conditions. Plant, Cell and Environ 29(11):2077–2090. CrossRefGoogle Scholar
  13. Bishop KA, Betzelberger AM, Long SP, Ainsworth EA (2015) Is there potential to adapt soybean (Glycine max Merr.) to future [CO2]: an analysis of the yield response of 18 genotypes in free-air CO2 enrichment. Plant Cell Environ 38(9):1765–1774. CrossRefGoogle Scholar
  14. Boote KJ, Pickering NB (1994) Modeling photosynthesis of row crop canopies. Hortscience 29:1423–1434Google Scholar
  15. Boote KJ, Jones JW, Hoogenboom G, Pickering NB (1998) Simulation of crop growth: CROPGRO model. In: Peart RM, Curry RB (eds) Agricultural systems modeling and simulation. Marcel Dekker, New York, pp 651–692Google Scholar
  16. Boote, K.J., Pickering, N.B., Allen Jr., L.H. (1997). Plant modeling: advances and gaps in our capability to predict future crop growth and yield in response to global climate change. In: Allen Jr., L.H., Kirkham, M.B., Olszyk, D.M., Whitman, C.E. (ed). Advances in carbon dioxide effects research. Madison: ASA, CSSA, and SSSA, pp. 179–228Google Scholar
  17. Bunce JA (2016) Responses of soybean and wheat to elevated CO2 in free-air and open top chamber systems. Field Crop Res 186:78–85. CrossRefGoogle Scholar
  18. CONAB (2017). Levantamento de Safra: Soja. Accessed 14 March 2017
  19. Dias HB, Sentelhas PC (2017) Evaluation of three sugarcane simulation models and their ensemble for yield estimation in commercially managed field. Field Crop Res 213:174–185. CrossRefGoogle Scholar
  20. Durand, JL., Delusca, K., Boote, K., Lizaso, J., Manderscheid, R., Weigel, H.J., Ruane, A.C., Rosenzweig, C., Jones, J., Ahuja, L., Anapalli, S., Basso, B., Baron, C., Bertuzzi, P., Biernath, C., Deryng, D., Ewert, F., Gaiser, T., Gayler, S., Heinlein, F., Kersebaum, K.C., Kim, S-H., Müller, C., Nendel, C., Olioso, A., Priesack, E., Villegas, J.R., Ripoche, D., Rötter, R.P., Seidel, S.I., Srivastava, A., Tao, F., Timlin, D., Twine, R., Wang, E., Webber, H., Zhao, Z. (2017)How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield? European Journal of Agronomy. Online.
  21. FAO (2016). FAOSTAT: FAO statistical databases. Disponível em: <>. Acesso em: 15 Jan 2016
  22. Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149(1):78–90. CrossRefGoogle Scholar
  23. Fleisher DH, Condori B, Quiroz R, Alva A, Asseng S, Barreda C, Bindi M, Boote KJ, Ferrise R, Franke AC, Govindakrishnan PM, Harahagazwe D, Hoogenboom G, Naresh Kumar S, Merante P, Nendel C, Olesen JE, Parker PS, Raes D, Raymundo R, Ruane AC, Stockle C, Supit I, Vanuytrecht E, Wolf J, Woli P (2017) A potato model inter-comparison across varying climates and productivity levels. Glob Chang Biol 23(3):1258–1281. CrossRefGoogle Scholar
  24. Hao X, Gao J, Han X, Ma Z, Merchant A, Ju H, Li P, Yang W, Gao Z, Lin E (2014) Effects of open-air elevated atmospheric CO2 concentration on yield quality of soybean (Glycine max (L) Merr). Agric Ecosyst Environ 192:80–84. CrossRefGoogle Scholar
  25. Harley PC, Weber JA, Gates DM (1985) Interactive effects of light, leaf temperature, CO2, and O2 on photosynthesis in soybean. Planta 165(2):249–263. CrossRefGoogle Scholar
  26. He D, Wang E, Wang J, Robertson MJ (2017) Data requirement for effective calibration of process-based crop models. Agric For Meteorol 234-235:136–148. CrossRefGoogle Scholar
  27. Hossain MM, Liu X, Qi X, Lam H-M, Zhang J (2014) Differences between soybean genotypes in physiological response to sequential soil drying and rewetting. The Crop J 2(6):366–380. CrossRefGoogle Scholar
  28. IBGE (2014). Mapas interativos: solos. http://mapasibgegovbr/ Acessed 18 October 2014
  29. IBGE (2015). Produção Agrícola Municipal. Accessed 15 January 2015
  30. IPCC. (2014). Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, 151 pp.Google Scholar
  31. Kassie BT, Asseng S, Rotter RP, Hengsdijk H, Ruane AC, Van Ittersum MK (2015) Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate changes scenarios and crop models. Clim Chang 129(1-2):145–158. CrossRefGoogle Scholar
  32. Kaster M, Farias JRB (2012) Regionalização dos testes de valor de cultivo e uso e da indicação de cultivares de soja – Terceira aproximação. Documentos 330. EMBRAPA Soja, Londrina, p 69Google Scholar
  33. Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, Mclean G, Verburg K, Snow V, Dimes JP, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, Mccown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18(3-4):267–288. CrossRefGoogle Scholar
  34. Kimball BA (2016) Crop responses to elevated CO2 and interactions with H2O, N and temperature. Curr Opin Plant Biol 31:36–43. CrossRefGoogle Scholar
  35. Leakey ADB, Bernacchi CJ, Ort DR, Long SP (2006) Long-term growth of soybean at elevated [CO2] does not cause acclimation of stomatal conductance under fully open-air conditions. Plant, Cell and Environ 29(9):1794–1800. CrossRefGoogle Scholar
  36. Li T, Hasegawa T, Yin X, Zhu Y, Boote K, Adam M, Bregaglio S, Buis S, Confalonieri B, Fumoto T, Gaydon D, Marcaida M, Nakagawa H, Oriol P, Ruane AC, Ruget F, Singh B, Singh U, Tang L, Tao F, Wilkens P, Yoshida H, Zhang Z, Bouman B (2015) Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob Chang Biol 21(3):1328–1341. CrossRefGoogle Scholar
  37. Martre, P., Wallach, D., Asseng, S., ., Ewert, F., Jones, J.W., Rötter, R.P., Boote, K.J., Ruane, A.C., Thorburn, P.J., Cammarano, D., Hatfield, J.L., Rosenzweig, C., Aggarwal, P.K., Angulo, C., Basso, B., Bertuzzi, P., Biernath, C., Brisson, N., Challinor, A.J., Doltra, J., Gayler, S., Goldberg, R., Grant, R.F., Heng, L., Hooker, J., Hunt, L.A., Ingwersen, J., Izaurralde, R.C., Kersebaum, K.C., Müller, C., Kumar, S.N., Nendel, C., O’Leary, G., Olesen, J.E., Osborne, T.M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M.A., Shcherbak, I., Steduto, P., Stöckle, C.O., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Travasso, M., Waha, K., White, J.W., Wolf, J. (2015). Multimodel ensembles of wheat growth: many models are better than one. Glob Chang Biol, 21:911–925.
  38. Nendel C, Berg M, Kersebaum KC, Mirschel W, Specka X, Wegehenkel M, Wenkel KO, Wieland R (2011) The MONICA model: testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecol Model 2221(9):614–1625. CrossRefGoogle Scholar
  39. NOAA/ESRL. (2015). Mauna Loa CO2 monthly mean data. http://wwwesrlnoaagov/gmd/ccgg/trends/indexhtml Acessed 19 November 2015
  40. Palosuo T, Kersebaum KC, Angulo C, Hlavinka P, Moriondo M, Olesen JE, Patil RH, Ruget F, Rumbaur C, Takác J, Trnka M, Bindi M, Caldag C, Ewert F, Ferrise R, Mirschel W, Saylan L, Siska B, Rötter R (2011) Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. European J Agronomy 35(3):103–114. CrossRefGoogle Scholar
  41. Pirttioja N, Carter TR, Fronzek S, Bindi M, Hoffmann H, Palosuo T, Ruiz-Ramos M, Tao R, Trnka M, Acutis M, Asseng S, Baranowiski P, Basso B, Bodin P, Buis S, Cammarano D, Deligios P, Destain M-F, Dumont B, Ewert F, Ferrise R, François L, Gaiser T, Hlavinka P, Jacquemin I, Kersebaum KC, Kollas C, Krzyszczak J, Lorite IJ, Minet J, Minguez MI, Montesino M, Moriondo M, Müller C, Nendel C, Öztürk I, Perego A, Rodríguez A, Ruane AC, Ruget F, Sanna M, Semenov MA, Slawinski C, Stratonovitch P, Supit I, Waha K, Wang E, Wu L, Zhao Z, Rötter RP (2015) Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Clim Res 65:87–105. CrossRefGoogle Scholar
  42. RADAMBRASIL (1974) Levantamento de recursos naturais. Rio de Janeiro, 4Google Scholar
  43. Reichert JM, Albuquerque JA, Kaiser DR, Reinert DJ, Urach FL, Carlesso R (2009) Estimation of water retention and availability in soil of Rio Grande do Sul. Revista Brasileira de Ciência do Solo 33(6):1547–1560. CrossRefGoogle Scholar
  44. Rosenthal DM, Ruiz-Vera UM, Siebers MH, Gray SB, Bernacchi CJ, Ort DR (2014) Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO2] and temperatures under fully open air field conditions. Plant Sci 226:136–146. CrossRefGoogle Scholar
  45. Ruiz-Vera UM, Siebers M, Gray SB, Drag DW, Rosenthal DM, Kimball BA, Ort DR, Bernacchi CJ (2013) Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the Midwestern United States. Plant Physiol 162(1):410–423. CrossRefGoogle Scholar
  46. Sentelhas PC, Battisti R, Câmara GMS, Farias JRB, Hampf A, Nendel C (2015) The soybean yield gap in Brazil—magnitude, causes and possible solution. J Agric Sci 158(08):1394–1411. CrossRefGoogle Scholar
  47. Steduto P, Hsiao TC, Raes D, Fereres E (2009) AquaCrop—the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron J 101(3):426–437. CrossRefGoogle Scholar
  48. Xu G, Singh SK, Reddy VR, Barnaby JY, Sicher RC, Li T (2016) Soybean grown under elevated CO2 benefits more under low temperature than high temperature stress: varying response of photosynthetic limitations, leaf metabolites, growth, and seed yield. J Plant Physiol 205:20–32. CrossRefGoogle Scholar
  49. Zhang J, Liu J, Yang C, Du S, Yang W (2016) Photosynthetic performance of soybean plants to water deficit under high and low light intensity. S Afr J Bot 105:279–287. CrossRefGoogle Scholar

Copyright information

© ISB 2017

Authors and Affiliations

  1. 1.College of AgronomyFederal University of GoiásGoiâniaBrazil
  2. 2.Department of Biosystems Engineering, ESALQUniversity of São PauloPiracicabaBrazil
  3. 3.Agronomy DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations