Skip to main content

Advertisement

Log in

Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Crop growth models have many uncertainties that affect the yield response to climate change. Based on that, the aim of this study was to evaluate the sensitivity of crop models to systematic changes in climate for simulating soybean attainable yield in Southern Brazil. Four crop models were used to simulate yields: AQUACROP, MONICA, DSSAT, and APSIM, as well as their ensemble. The simulations were performed considering changes of air temperature (0, + 1.5, + 3.0, + 4.5, and + 6.0 °C), [CO2] (380, 480, 580, 680, and 780 ppm), rainfall (− 30, − 15, 0, + 15, and + 30%), and solar radiation (− 15, 0, + 15), applied to daily values. The baseline climate was from 1961 to 2014, totalizing 53 crop seasons. The crop models simulated a reduction of attainable yield with temperature increase, reaching 2000 kg ha−1 for the ensemble at + 6 °C, mainly due to shorter crop cycle. For rainfall, the yield had a higher rate of reduction when it was diminished than when rainfall was increased. The crop models increased yield variability when solar radiation was changed from − 15 to + 15%, whereas [CO2] rise resulted in yield gains, following an asymptotic response, with a mean increase of 31% from 380 to 680 ppm. The models used require further attention to improvements in optimal and maximum cardinal temperature for development rate; runoff, water infiltration, deep drainage, and dynamic of root growth; photosynthesis parameters related to soil water availability; and energy balance of soil-plant system to define leaf temperature under elevated CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alagarswamy G, Boote KJ, Allen LH Jr, Jones JW (2006) Evaluating the CROPGRO-soybean model ability to simulate photosynthesis response to carbon dioxide levels. Agron J 98(1):34–42. https://doi.org/10.2134/agronj2004-0298

    Article  CAS  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22(6):711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Araya A, Hoogenboom G, Luedeling E, Hadgu KM, Kisekka I (2015) Assessment of maize growth and yield using crop models under present and future climate in southwestern Ethiopia. Agric For Meteorol 214:252–265. https://doi.org/10.1016/j.agrformet.2015.08.259

    Article  Google Scholar 

  • Asseng S, Ewert F, Rosenzweig C, Hatfield JL, Ruane AC, Boote KJ, Thorburn PJ, Rötter RP, Camm Arano D, Brisson N, Basso B, Martre P, Aggarwal PK, Angulo C, Bertuzzi P, Biernath C, Challinor AJ, Doltra J, Gayler S, Goldberg R, Grant R, Heng L, Hooker J, Hunt LA, Ingwersen J, Izaurralde RC, Kersebaum KC, Müller C, Naresh Kumar S, Nendel C, O’Leary G, Olesen JE, Osborne TM, Palosuo T, Priesack E, Ripoche D, Semenov MA, Shcherbak I, Steduto P, Stöckle C, Stratonovitch P, Streck T, Supit I, Tao F, Travasso M, Waha K, Wallach D, White JW, Williams JR, Wolf J (2013) Uncertainty in simulation wheat yield under climate change. Nat Clim Chang 3(9):827–832. https://doi.org/10.1038/NCLIMATE1916

    Article  CAS  Google Scholar 

  • Bassu S, Brisson N, Durand J-L, Boote KJ, Lizaso J, Jones JW, Rosenzweig C, Ruane AC, Adam M, Baron C, Basso B, Biernath C, Boogaard H, Conijn S, Corbeels M, Deryng D, Sanctis GS, Gayler S, Grassini P, Hatfield J, Hoek S, Izaurralde C, Jongschaap R, Kemanian AR, Kersebaum KC, Kim S-H, Kumar MS, Makowski D, Müller C, Nendel C, Priesack E, Pravia MV, Sau F, Shcherbak I, Tao F, Teixeira E, Timlin D, Waha K (2014) How do various maize crop models vary in their responses to climate change factors? Glob Chang Biol 20(7):2301–2320. https://doi.org/10.1111/gcb.12520

    Article  Google Scholar 

  • Battisti R, Sentelhas PC (2014) New agroclimatic approach for soybean sowing dates recommendation: a case study. Revista Brasileira de Engenharia Agrícola e Ambiental 18(11):1149–1156. https://doi.org/10.1590/1807-1929/agriambi.v18n11p1149-1156

    Article  Google Scholar 

  • Battisti R, Sentelhas PC, Boote KJ (2017c) Inter-comparison of performance of soybean crop simulation models and their ensemble in Southern Brazil. Field Crop Res 200:28–37. https://doi.org/10.1016/j.fcr.2016.10.004

    Article  Google Scholar 

  • Battisti R, Sentelhas PC, Boote KJ, Câmara GMS, Farias JRF, Basso CJ (2017a) Assessment of soybean yield with altered water-related genetic improvement traits under climate change in Southern Brazil. Eur J Agron 83:1–14. https://doi.org/10.1016/j.eja.2016.11.004

    Article  Google Scholar 

  • Battisti R, Parker PS, Sentelhas PC, Nendel C (2017b) Gauging the sources of uncertainty in soybean yield simulations using the MONICA model. Agric Syst 155:9–18. https://doi.org/10.1016/j.agsy.2017.04.004

    Article  Google Scholar 

  • Bernacchi CJ, Morgan PB, Ort DR, Long SP (2005) The growth of soybean under free air [CO2] enrichment (FACE) stimulates photosynthesis while decreasing in vivo Rubisco capacity. Planta 220(3):434–446. https://doi.org/10.1007/s00425-004-1320-8

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Kimball BA, Quarles DR, Long SP, Ort DR (2007) Decreases in stomatal conductance of soybean under open-air elevation of [CO2] are closely coupled with decreases in ecosystem evapotranspiration. Plant Physiol 143(1):134–144. https://doi.org/10.1104/pp.106.089557

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Leakey ADB, Heady LE, Morgan PB, Dohleman FG, McGrath JM, Gillespie KM, Wittig VE, Rogers A, Long SP, Ort DR (2006) Hourly and seasonal variation in photosynthesis and stomatal conductance of soybean grown at future CO2 and ozone concentrations for 3 years under fully open-air conditions. Plant, Cell and Environ 29(11):2077–2090. https://doi.org/10.1111/j.1365-3040.2006.01581.x

    Article  CAS  Google Scholar 

  • Bishop KA, Betzelberger AM, Long SP, Ainsworth EA (2015) Is there potential to adapt soybean (Glycine max Merr.) to future [CO2]: an analysis of the yield response of 18 genotypes in free-air CO2 enrichment. Plant Cell Environ 38(9):1765–1774. https://doi.org/10.1111/pce.12443

    Article  Google Scholar 

  • Boote KJ, Pickering NB (1994) Modeling photosynthesis of row crop canopies. Hortscience 29:1423–1434

    Google Scholar 

  • Boote KJ, Jones JW, Hoogenboom G, Pickering NB (1998) Simulation of crop growth: CROPGRO model. In: Peart RM, Curry RB (eds) Agricultural systems modeling and simulation. Marcel Dekker, New York, pp 651–692

    Google Scholar 

  • Boote, K.J., Pickering, N.B., Allen Jr., L.H. (1997). Plant modeling: advances and gaps in our capability to predict future crop growth and yield in response to global climate change. In: Allen Jr., L.H., Kirkham, M.B., Olszyk, D.M., Whitman, C.E. (ed). Advances in carbon dioxide effects research. Madison: ASA, CSSA, and SSSA, pp. 179–228

  • Bunce JA (2016) Responses of soybean and wheat to elevated CO2 in free-air and open top chamber systems. Field Crop Res 186:78–85. https://doi.org/10.1016/j.fcr.2015.11.010

    Article  Google Scholar 

  • CONAB (2017). Levantamento de Safra: Soja. http://www.conab.gov.br/conteudos.php?a=1253&. Accessed 14 March 2017

  • Dias HB, Sentelhas PC (2017) Evaluation of three sugarcane simulation models and their ensemble for yield estimation in commercially managed field. Field Crop Res 213:174–185. https://doi.org/10.1016/j.fcr.2017.07.022

    Article  Google Scholar 

  • Durand, JL., Delusca, K., Boote, K., Lizaso, J., Manderscheid, R., Weigel, H.J., Ruane, A.C., Rosenzweig, C., Jones, J., Ahuja, L., Anapalli, S., Basso, B., Baron, C., Bertuzzi, P., Biernath, C., Deryng, D., Ewert, F., Gaiser, T., Gayler, S., Heinlein, F., Kersebaum, K.C., Kim, S-H., Müller, C., Nendel, C., Olioso, A., Priesack, E., Villegas, J.R., Ripoche, D., Rötter, R.P., Seidel, S.I., Srivastava, A., Tao, F., Timlin, D., Twine, R., Wang, E., Webber, H., Zhao, Z. (2017)How accurately do maize crop models simulate the interactions of atmospheric CO2 concentration levels with limited water supply on water use and yield? European Journal of Agronomy. Online. https://doi.org/10.1016/j.eja.2017.01.002

  • FAO (2016). FAOSTAT: FAO statistical databases. Disponível em: <http://faostat3.fao.org/home/E>. Acesso em: 15 Jan 2016

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149(1):78–90. https://doi.org/10.1007/BF00386231

    Article  CAS  Google Scholar 

  • Fleisher DH, Condori B, Quiroz R, Alva A, Asseng S, Barreda C, Bindi M, Boote KJ, Ferrise R, Franke AC, Govindakrishnan PM, Harahagazwe D, Hoogenboom G, Naresh Kumar S, Merante P, Nendel C, Olesen JE, Parker PS, Raes D, Raymundo R, Ruane AC, Stockle C, Supit I, Vanuytrecht E, Wolf J, Woli P (2017) A potato model inter-comparison across varying climates and productivity levels. Glob Chang Biol 23(3):1258–1281. https://doi.org/10.1111/gcb.13411

    Article  Google Scholar 

  • Hao X, Gao J, Han X, Ma Z, Merchant A, Ju H, Li P, Yang W, Gao Z, Lin E (2014) Effects of open-air elevated atmospheric CO2 concentration on yield quality of soybean (Glycine max (L) Merr). Agric Ecosyst Environ 192:80–84. https://doi.org/10.1016/j.agee.2014.04.002

    Article  CAS  Google Scholar 

  • Harley PC, Weber JA, Gates DM (1985) Interactive effects of light, leaf temperature, CO2, and O2 on photosynthesis in soybean. Planta 165(2):249–263. https://doi.org/10.1007/BF00395048

    Article  CAS  Google Scholar 

  • He D, Wang E, Wang J, Robertson MJ (2017) Data requirement for effective calibration of process-based crop models. Agric For Meteorol 234-235:136–148. https://doi.org/10.1016/j.agrformet.2016.12.015

    Article  Google Scholar 

  • Hossain MM, Liu X, Qi X, Lam H-M, Zhang J (2014) Differences between soybean genotypes in physiological response to sequential soil drying and rewetting. The Crop J 2(6):366–380. https://doi.org/10.1016/j.cj.2014.08.001

    Article  Google Scholar 

  • IBGE (2014). Mapas interativos: solos. http://mapasibgegovbr/ Acessed 18 October 2014

  • IBGE (2015). Produção Agrícola Municipal. http://www.sidra.ibge.gov.br/bda/pesquisas/pam/default.asp?o=18&i=P. Accessed 15 January 2015

  • IPCC. (2014). Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, 151 pp.

  • Kassie BT, Asseng S, Rotter RP, Hengsdijk H, Ruane AC, Van Ittersum MK (2015) Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate changes scenarios and crop models. Clim Chang 129(1-2):145–158. https://doi.org/10.1007/s10584-014-1322-x

    Article  Google Scholar 

  • Kaster M, Farias JRB (2012) Regionalização dos testes de valor de cultivo e uso e da indicação de cultivares de soja – Terceira aproximação. Documentos 330. EMBRAPA Soja, Londrina, p 69

    Google Scholar 

  • Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, Mclean G, Verburg K, Snow V, Dimes JP, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, Mccown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18(3-4):267–288. https://doi.org/10.1016/S1161-0301(02)00108-9

    Article  Google Scholar 

  • Kimball BA (2016) Crop responses to elevated CO2 and interactions with H2O, N and temperature. Curr Opin Plant Biol 31:36–43. https://doi.org/10.1016/j.pbi.2016.03.006

    Article  CAS  Google Scholar 

  • Leakey ADB, Bernacchi CJ, Ort DR, Long SP (2006) Long-term growth of soybean at elevated [CO2] does not cause acclimation of stomatal conductance under fully open-air conditions. Plant, Cell and Environ 29(9):1794–1800. https://doi.org/10.1111/j.1365-3040.2006.01556.x

    Article  CAS  Google Scholar 

  • Li T, Hasegawa T, Yin X, Zhu Y, Boote K, Adam M, Bregaglio S, Buis S, Confalonieri B, Fumoto T, Gaydon D, Marcaida M, Nakagawa H, Oriol P, Ruane AC, Ruget F, Singh B, Singh U, Tang L, Tao F, Wilkens P, Yoshida H, Zhang Z, Bouman B (2015) Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob Chang Biol 21(3):1328–1341. https://doi.org/10.1111/gcb.12758

    Article  CAS  Google Scholar 

  • Martre, P., Wallach, D., Asseng, S., ., Ewert, F., Jones, J.W., Rötter, R.P., Boote, K.J., Ruane, A.C., Thorburn, P.J., Cammarano, D., Hatfield, J.L., Rosenzweig, C., Aggarwal, P.K., Angulo, C., Basso, B., Bertuzzi, P., Biernath, C., Brisson, N., Challinor, A.J., Doltra, J., Gayler, S., Goldberg, R., Grant, R.F., Heng, L., Hooker, J., Hunt, L.A., Ingwersen, J., Izaurralde, R.C., Kersebaum, K.C., Müller, C., Kumar, S.N., Nendel, C., O’Leary, G., Olesen, J.E., Osborne, T.M., Palosuo, T., Priesack, E., Ripoche, D., Semenov, M.A., Shcherbak, I., Steduto, P., Stöckle, C.O., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Travasso, M., Waha, K., White, J.W., Wolf, J. (2015). Multimodel ensembles of wheat growth: many models are better than one. Glob Chang Biol, 21:911–925. https://doi.org/10.1111/gcb.12768

  • Nendel C, Berg M, Kersebaum KC, Mirschel W, Specka X, Wegehenkel M, Wenkel KO, Wieland R (2011) The MONICA model: testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecol Model 2221(9):614–1625. https://doi.org/10.1016/j.ecolmodel.2011.02.018

    Article  CAS  Google Scholar 

  • NOAA/ESRL. (2015). Mauna Loa CO2 monthly mean data. http://wwwesrlnoaagov/gmd/ccgg/trends/indexhtml Acessed 19 November 2015

  • Palosuo T, Kersebaum KC, Angulo C, Hlavinka P, Moriondo M, Olesen JE, Patil RH, Ruget F, Rumbaur C, Takác J, Trnka M, Bindi M, Caldag C, Ewert F, Ferrise R, Mirschel W, Saylan L, Siska B, Rötter R (2011) Simulation of winter wheat yield and its variability in different climates of Europe: a comparison of eight crop growth models. European J Agronomy 35(3):103–114. https://doi.org/10.1016/j.eja.2011.05.001

    Article  Google Scholar 

  • Pirttioja N, Carter TR, Fronzek S, Bindi M, Hoffmann H, Palosuo T, Ruiz-Ramos M, Tao R, Trnka M, Acutis M, Asseng S, Baranowiski P, Basso B, Bodin P, Buis S, Cammarano D, Deligios P, Destain M-F, Dumont B, Ewert F, Ferrise R, François L, Gaiser T, Hlavinka P, Jacquemin I, Kersebaum KC, Kollas C, Krzyszczak J, Lorite IJ, Minet J, Minguez MI, Montesino M, Moriondo M, Müller C, Nendel C, Öztürk I, Perego A, Rodríguez A, Ruane AC, Ruget F, Sanna M, Semenov MA, Slawinski C, Stratonovitch P, Supit I, Waha K, Wang E, Wu L, Zhao Z, Rötter RP (2015) Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Clim Res 65:87–105. https://doi.org/10.3354/cr01322

    Article  Google Scholar 

  • RADAMBRASIL (1974) Levantamento de recursos naturais. Rio de Janeiro, 4

  • Reichert JM, Albuquerque JA, Kaiser DR, Reinert DJ, Urach FL, Carlesso R (2009) Estimation of water retention and availability in soil of Rio Grande do Sul. Revista Brasileira de Ciência do Solo 33(6):1547–1560. https://doi.org/10.1590/S0100-06832009000600004

    Article  Google Scholar 

  • Rosenthal DM, Ruiz-Vera UM, Siebers MH, Gray SB, Bernacchi CJ, Ort DR (2014) Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO2] and temperatures under fully open air field conditions. Plant Sci 226:136–146. https://doi.org/10.1016/j.plantsci.2014.06.013

    Article  CAS  Google Scholar 

  • Ruiz-Vera UM, Siebers M, Gray SB, Drag DW, Rosenthal DM, Kimball BA, Ort DR, Bernacchi CJ (2013) Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the Midwestern United States. Plant Physiol 162(1):410–423. https://doi.org/10.1104/pp.112.211938

    Article  CAS  Google Scholar 

  • Sentelhas PC, Battisti R, Câmara GMS, Farias JRB, Hampf A, Nendel C (2015) The soybean yield gap in Brazil—magnitude, causes and possible solution. J Agric Sci 158(08):1394–1411. https://doi.org/10.1017/S0021859615000313

    Article  Google Scholar 

  • Steduto P, Hsiao TC, Raes D, Fereres E (2009) AquaCrop—the FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agron J 101(3):426–437. https://doi.org/10.2134/agronj2008.0139s

    Article  Google Scholar 

  • Xu G, Singh SK, Reddy VR, Barnaby JY, Sicher RC, Li T (2016) Soybean grown under elevated CO2 benefits more under low temperature than high temperature stress: varying response of photosynthetic limitations, leaf metabolites, growth, and seed yield. J Plant Physiol 205:20–32. https://doi.org/10.1016/j.jplph.2016.08.003

    Article  CAS  Google Scholar 

  • Zhang J, Liu J, Yang C, Du S, Yang W (2016) Photosynthetic performance of soybean plants to water deficit under high and low light intensity. S Afr J Bot 105:279–287. https://doi.org/10.1016/j.sajb.2016.04.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the São Paulo Research Foundation (FAPESP) for the support to this study through the Ph.D. scholarship (Process N° 2013/05306-0) and the Ph.D. Exchange scholarship (Process N° 2014/09424-0) at the University of Florida. The second author would like to thank the Brazilian Research Council (CNPq) for the support to this study through a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Battisti.

Electronic supplementary material

ESM 1

(PDF 276 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battisti, R., Sentelhas, P.C. & Boote, K.J. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil. Int J Biometeorol 62, 823–832 (2018). https://doi.org/10.1007/s00484-017-1483-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-017-1483-1

Keywords

Navigation