Advertisement

International Journal of Biometeorology

, Volume 62, Issue 5, pp 795–808 | Cite as

Urban climate modifies tree growth in Berlin

  • Jens Dahlhausen
  • Thomas Rötzer
  • Peter Biber
  • Enno Uhl
  • Hans Pretzsch
Original Paper

Abstract

Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees (Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.

Keywords

Urban heat island effect Growth trend Urban trees Lime trees 

Notes

Acknowledgements

Thanks to the AUDI Environmental Foundation for funding the project Response of urban trees on climate change and the City Ministry of Berlin, especially the several district offices, for the allowance of coring and measuring trees and for supporting the search of the trees. We acknowledge the German Weather Service (DWD) for providing us climate data. We also thank the two anonymous reviewers for their helpful criticism.

Supplementary material

484_2017_1481_MOESM1_ESM.pdf (541 kb)
ESM 1 (PDF 541 kb)
484_2017_1481_MOESM2_ESM.docx (16 kb)
ESM 2 (DOCX 16 kb)

References

  1. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshear DD et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684.  https://doi.org/10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  2. Assmann E (1970) The principles of forest yield study. Pergamon Press, Oxford, New York, 506 pGoogle Scholar
  3. Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010) Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc Urban Plan 97(3):147–155.  https://doi.org/10.1016/j.landurbplan.2010.05.006 CrossRefGoogle Scholar
  4. Briffa KR, Osborn TJ, Schweingruber FH (2004) Large-scale temperature inferences from tree rings: a review. Glob Planet Chang 40(1-2):11–26.  https://doi.org/10.1016/S0921-8181(03)00095-X CrossRefGoogle Scholar
  5. Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26(2):115–124.  https://doi.org/10.1016/j.dendro.2008.01.002 CrossRefGoogle Scholar
  6. Carrer M, Urbinati C (2006) Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytol 170(4):861–872.  https://doi.org/10.1111/j.1469-8137.2006.01703.x CrossRefGoogle Scholar
  7. Cherubini P, Gärtner H, Esper J, Dobbertin MK, Kaiser KF, Rigling A, Treydte K, Zimmermann NE, Bräker OU (2004) Jahrringe als Archive für interdisziplinäre Umweltforschung| Annual rings as an archive for interdisciplinary environmental research. Schweiz Z Forstwes 155(6):162–168.  https://doi.org/10.3188/szf.2004.0162 CrossRefGoogle Scholar
  8. Churkina G, Zaehle S, Hughes J, Viovy N, Chen Y, Jung M, Heumann BW, Ramankutty N, Heiman M, Jones C (2010) Interactions between nitrogen deposition, land cover conversion, and climate change determine the contemporary carbon balance of Europe. Biogeosciences 7(9):2749–2764.  https://doi.org/10.5194/bg-7-2749-2010 CrossRefGoogle Scholar
  9. Cook ER, Kairiukstis LA (eds) (1992) Methods of dendrochronology: applications in the enviromental sciences. Kluwer Academic Publishers, Dordrecht, 394 pGoogle Scholar
  10. David A, Boura A, Kraepiel Y, Lata J-C, Barot S, Abbadie L, Ngao J. (2015) Long term impact of climate on tree-growth patterns in Paris street trees and its consequences on tree cooling potential: a dendroclimatic approach. Conference paper, ICUC9.Google Scholar
  11. Dahlhausen J, Biber P, Rötzer T, Uhl E, Pretzsch H (2016) Tree species and their space requirements in six urban environments worldwide. Forests 7(6):111.  https://doi.org/10.3390/f7060111 CrossRefGoogle Scholar
  12. De Jaegere T, Hein S, Claessens H (2016) A review of the characteristics of small-leaved lime (Tilia cordata Mill.) and their implications for silviculture in a changing climate. Forests 7(3):56.  https://doi.org/10.3390/f7030056 CrossRefGoogle Scholar
  13. Dugord P-A, Lauf S, Schuster C, Kleinschmit B (2014) Land use patterns, temperature distribution, and potential heat stress risk—the case study Berlin, Germany. Comput Environ Urban Syst 48:86–98.  https://doi.org/10.1016/j.compenvurbsys.2014.07.005 CrossRefGoogle Scholar
  14. Eckstein D, Breyne A, Aniol RW, Liese W (1981) Dendroklimatologische Untersuchungen zur Entwicklung von Straßenbäumen. Forstw Cbl 100(1):381–396.  https://doi.org/10.1007/BF02640656 CrossRefGoogle Scholar
  15. Esri (2014) Urban Observatory. Environmental Systems Research Institute, CAGoogle Scholar
  16. Farrell C, Szota C, Arndt SK (2015) Urban plantings: ‘living laboratories’ for climate change response. Trends Plant Sci 20:597–599.  https://doi.org/10.1016/j.tplants.2015.08.006 CrossRefGoogle Scholar
  17. Fenner D, Meier F, Scherer D, Polze A (2014) Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001–2010. Urban Climate 10:308–331.  https://doi.org/10.1016/j.uclim.2014.02.004 CrossRefGoogle Scholar
  18. Friedrichs DA, Trouet V, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J (2009) Species-specific climate sensitivity of tree growth in Central-West Germany. Trees 23(4):729–739.  https://doi.org/10.1007/s00468-009-0315-2 CrossRefGoogle Scholar
  19. George K, Ziska LH, Bunce JA, Quebedeaux B (2007) Elevated atmospheric CO2 concentration and temperature across an urban–rural transect. Atmos Environ 41(35):7654–7665.  https://doi.org/10.1016/j.atmosenv.2007.08.018 CrossRefGoogle Scholar
  20. George K, Ziska LH, Bunce JA, Quebedeaux B, Hom JL, Wolf J, Teasdale JR (2009) Macroclimate associated with urbanization increases the rate of secondary succession from fallow soil. Oecologia 159(3):637–647.  https://doi.org/10.1007/s00442-008-1238-0 CrossRefGoogle Scholar
  21. Gill SE, Handley JF, Ennos AR, Pauleit S (2007) Adapting cities for climate change: the role of the green infrastructure. Built Environment:115–133Google Scholar
  22. Gillner S (2012) Stadtbäume im Klimawandel - Dendrochronologische und physiologische Untersuchungen zur Identifikation der Trockenstressempfindlichkeit häufig verwendeter Stadtbaumarten in Dresden. Diss TU Dresden. http://www.qucosa.de/fileadmin/data/qucosa/documents/9367/Dissertation_Gillner.pdf. Accessed 29 Nov 2017
  23. Gillner S, Vogt J, Roloff A (2013) Climatic response and impacts of drought on oaks at urban and forest sites. Urban For Urban Green 12(4):597–605.  https://doi.org/10.1016/j.ufug.2013.05.003 CrossRefGoogle Scholar
  24. Gillner S, Bräuning A, Roloff A (2014) Dendrochronological analysis of urban trees: climatic response and impact of drought on frequently used tree species. Trees 28(4):1079–1093.  https://doi.org/10.1007/s00468-014-1019-9 CrossRefGoogle Scholar
  25. Graves HM, Watkins R,Westbury P, Littlefair P (2001) Cooling buildings in London: overcoming the heat island. CRC Ltd, London, 311 S.Google Scholar
  26. Gregg JW, Jones CG, Dawson TE (2003) Urbanization effects on tree growth in the vicinity of New York City. Nature 424(6945):183–187.  https://doi.org/10.1038/nature01728 CrossRefGoogle Scholar
  27. Griess VC, Knoke T (2011) Growth performance, windthrow, and insects: meta-analyses of parameters influencing performance of mixed-species stands in boreal and northern temperate biomes. Canadian. J For Res 41:1141–1158CrossRefGoogle Scholar
  28. Günther R (2014) The role of soil water content for microclimatic effects of green roofs and urban trees—a case study from Berlin, Germany. J Heat Island Institute Int 9:2Google Scholar
  29. Gworek B, Déckowska A, Pierścieniak M (2011) Traffic pollutant indicators: common dandelion (Teraxacum officinale), scots pine (Pinus Silvestris), small-leaved lime (Tilia Cordata). Polish J Environ Stud 20:87–92Google Scholar
  30. Hartmann H (2011) Will a 385 million year-struggle for light become a struggle for water and for carbon?—How trees may cope with more frequent climate change-type drought events: WILL TREES STRUGGLE FOR WATER AND/OR CARBON? Glob Chang Biol 17(1):642–655.  https://doi.org/10.1111/j.1365-2486.2010.02248.x CrossRefGoogle Scholar
  31. Helama S, Läänelaid A, Raisio J, Tuomenvirta H (2012) Mortality of urban pines in Helsinki explored using tree rings and climate records. Trees 26(2):353–362.  https://doi.org/10.1007/s00468-011-0597-z CrossRefGoogle Scholar
  32. Johann K (1977) Eine neue Jahrringmeßanlage für Bohrkerne und Stammscheiben. Forstarchiv 48(10):204–206Google Scholar
  33. Jones PD (2004) Climate over past millennia. Rev Geophys 42(2).  https://doi.org/10.1029/2003RG000143
  34. Kabisch N, Haase D (2014) Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landsc Urban Plan 122:129–139.  https://doi.org/10.1016/j.landurbplan.2013.11.016 CrossRefGoogle Scholar
  35. Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV (2006) A distinct urban biogeochemistry? Trends Ecol. Evolution 21:192–199CrossRefGoogle Scholar
  36. Köcher P, Gebauer T, Horna V, Leuschner C (2009) Leaf water status and stem xylem flux in relation to soil drought in five temperate broad-leaved tree species with contrasting water use strategies. Ann For Sci 66(1):101–101.  https://doi.org/10.1051/forest/2008076 CrossRefGoogle Scholar
  37. Kuttler W (2004) Stadtklima – Teil 1: Grundzüge und Ursachen. UWSF - Z Umweltchemie Ökotox 16(3):187–199.  https://doi.org/10.1065/uwsf2004.03.078 CrossRefGoogle Scholar
  38. Leuzinger S, Vogt R, Körner C (2010) Tree surface temperature in an urban environment. Agric For Meteorol 150(1):56–62.  https://doi.org/10.1016/j.agrformet.2009.08.006 CrossRefGoogle Scholar
  39. McCarthy MP, Best MJ, Betts RA (2010) Climate change in cities due to global warming and urban effects: CLIMATE CHANGE IN CITIES. Geophysical Research Letters 37:n/a–n/a. doi:  https://doi.org/10.1029/2010GL042845
  40. McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739.  https://doi.org/10.1111/j.1469-8137.2008.02436.x CrossRefGoogle Scholar
  41. McPherson EG, Nowak D, Heisler G, Grimmond S, Souch C, Grant R, Rowntree R (1997) Quantifying urban forest structure, function, and value: the Chicago Urban Forest Climate Project. Urban Ecosystems 1:49–61CrossRefGoogle Scholar
  42. Meier F, Scherer D (2012) Spatial and temporal variability of urban tree canopy temperature during summer 2010 in Berlin, Germany. Theor Appl Climatol 110(3):373–384.  https://doi.org/10.1007/s00704-012-0631-0 CrossRefGoogle Scholar
  43. Moser A, Rötzer T, Pauleit S, Pretzsch H (2015) Structure and ecosystem services of small-leaved lime (Tilia cordata Mill.) and black locust (Robinia pseudoacacia L.) in urban environments. Urban For Urban Green 14(4):1110–1121.  https://doi.org/10.1016/j.ufug.2015.10.005 CrossRefGoogle Scholar
  44. Moser A, Rötzer T, Pauleit S, Pretzsch H (2016) The urban environment can modify drought stress of small-leaved lime (Tilia cordata Mill.) and black locust (Robinia pseudoacacia L.) Forests 7(3):71.  https://doi.org/10.3390/f7030071 CrossRefGoogle Scholar
  45. Nowak DJ, Greenfield EJ, Hoehn RE, Lapoint E (2013) Carbon storage and sequestration by trees in urban and community areas of the United States. Environ Pollut 178:229–236.  https://doi.org/10.1016/j.envpol.2013.03.019 CrossRefGoogle Scholar
  46. Parker DE (2004) Climate: large-scale warming is not urban. Nature 432(7015):290.  https://doi.org/10.1038/432290a CrossRefGoogle Scholar
  47. Pauleit S, Jones N, Garcia-Martin G, Garcia-Valdecantos JL, Rivière LM, Vidal-Beaudet L, Bodson M, Randrup TB (2002) Tree establishment practice in towns and cities–results from a European survey. Urban For Urban Green 1(2):83–96.  https://doi.org/10.1078/1618-8667-00009 CrossRefGoogle Scholar
  48. Peng S, Piao S, Ciais P, Friedlingstein P, Ottle C, Bréon F-M, Nan H, Zhou L, Myneni RB (2012) Surface urban heat island across 419 global big cities. Environmental Science & Technology 46(2):696–703.  https://doi.org/10.1021/es2030438 CrossRefGoogle Scholar
  49. Pretzsch H (1989) Zur Zuwachsreaktionskinetik der Waldbestände im Bereich des Braunkohlekraftwerkes Schwandorf in der Oberpfalz. Allg Forst- und Jagdzeitung 160(2/3):43–54Google Scholar
  50. Pretzsch H, Dieler J (2011) The dependency of the size-growth relationship of Norway spruce (Picea abies [L.] Karst.) and European beech (Fagus sylvatica [L.]) in forest stands on long-term site conditions, drought events, and ozone stress. Trees-Struct Funct 25(3):355–369.  https://doi.org/10.1007/s00468-010-0510-1 CrossRefGoogle Scholar
  51. Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T (2014) Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat Commun 5:4967.  https://doi.org/10.1038/ncomms5967 CrossRefGoogle Scholar
  52. Pretzsch H, Biber P, Uhl E, Dahlhausen J, Rötzer T, Caldentey J, Koike T, van Con T, Chavanne A, Seifert T, Toit B, Farnden C, Pauleit S (2015) Crown size and growing space requirement of common tree species in urban centres, parks, and forests. Urban For Urban Green 14(3):466–479.  https://doi.org/10.1016/j.ufug.2015.04.006 CrossRefGoogle Scholar
  53. Preuhsler T (1979) Ertragskundliche Merkmale oberbayerischer Bergmischwald-Verjüngungsbestände auf kalkalpinen Standorten im Forstamt Kreuth. Forstl Forschungsber München 45:372pGoogle Scholar
  54. Quigley MF (2004) Street trees and rural conspecifics: will long-lived trees reach full size in urban conditions? Urban Ecosystems 7(1):29–39.  https://doi.org/10.1023/B:UECO.0000020170.58404.e9 CrossRefGoogle Scholar
  55. Randrup TB, McPherson EG, Costello LR (2001) A review of tree root conflicts with sidewalks, curbs, and roads. Urban Ecosystems 5(3):209–225.  https://doi.org/10.1023/A:1024046004731 CrossRefGoogle Scholar
  56. Rötzer T, Wittenzeller M, Haeckel H, Nekovar J (2000) Phenology in central Europe–differences and trends of spring phenophases in urban and rural areas. Int J Biometeorol 44(2):60–66.  https://doi.org/10.1007/s004840000062 CrossRefGoogle Scholar
  57. Rötzer T (2007) Auswirkungen des Stadtklimas auf die Vegetation. Promet 33(1/2):40–45Google Scholar
  58. Rötzer T, Liao Y, Görgen K, Schüler G, Pretzsch H (2013) Modelling the impact of climate change on the productivity and water-use efficiency of a central European beech forest. Clim Res 58(1):81–95.  https://doi.org/10.3354/cr01179 CrossRefGoogle Scholar
  59. Searle SY, Turnbull MH, Boelman NT, Schuster WSF, Yakir D, Griffin KL (2012) Urban environment of New York City promotes growth in northern red oak seedlings. Tree Physiol 32:389–400.  https://doi.org/10.1093/treephys/tps027 CrossRefGoogle Scholar
  60. Scherer D, Fehrenbach U, Lakes T, Lauf S, Meier F, Schuster C (2014) Quantification of heat-stress related mortality hazard, vulnerability and risk in Berlin, Germany. DIE ERDE 144:238–259Google Scholar
  61. Schmelcher R (2011) Flächenentwicklung in Berlin: 1991–2010-2030. Senate Department for Urban Development and the Environment, Berlin http://opus.kobv.de/zlb/volltexte/2012/14650/. Accessed 11 December 2015Google Scholar
  62. Schütt P, Schuck HJ, Stimm B (2013) Lexikon der Baum- und Straucharten – Das Standardwerk der Forstbotanik. Nikol Verlag, HamburgGoogle Scholar
  63. Schweingruber FH, Eidgenössische Forschungsanstalt für Wald S und L (1996) Tree rings and environment dendroecology. Paul HauptGoogle Scholar
  64. Shepherd JM (2005) A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interactions 9:1–27CrossRefGoogle Scholar
  65. Skovsgaard JP, Vanclay JK (2008) Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81:13–31CrossRefGoogle Scholar
  66. Uhl E, Ammer C, Spellmann H, Schölch M, Pretzsch H (2013) Zuwachstrend und Stressresilienz von Tanne und Fichte im Vergleich. Allg Forst-und Jagdzeitung 184:278–292Google Scholar
  67. UN (2012) World urbanisation prospects the 2011 revision. United Nations, World Urbanisation Prospects, Department of Economic and Social AffairsGoogle Scholar
  68. US-EPA (2014) United States. Environmental Protection Agency. Heat Island Effect. http://www.epa.gov/hiri/ from November 11th, 2014
  69. Way DA, Oren R (2010) Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiology 30:669–688.  https://doi.org/10.1093/treephys/tpq015 CrossRefGoogle Scholar
  70. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23(2):201–213.  https://doi.org/10.1175/1520-0450(1984)023<C0201:OTAVOC>2.0.CO;2
  71. Youngsteadt E, Dale AG, Terando AJ, Dunn RR, Frank SD (2015) Do cities simulate climate change? A comparison of herbivore response to urban and global warming. Glob Chang Biol 21(1):97–105.  https://doi.org/10.1111/gcb.12692 CrossRefGoogle Scholar

Copyright information

© ISB 2017

Authors and Affiliations

  • Jens Dahlhausen
    • 1
  • Thomas Rötzer
    • 1
  • Peter Biber
    • 1
  • Enno Uhl
    • 1
  • Hans Pretzsch
    • 1
  1. 1.Center of Life and Food Sciences WeihenstephanTechnical University of MunichFreisingGermany

Personalised recommendations