Advertisement

International Journal of Biometeorology

, Volume 62, Issue 4, pp 597–608 | Cite as

Ambrosia pollen source inventory for Italy: a multi-purpose tool to assess the impact of the ragweed leaf beetle (Ophraella communa LeSage) on populations of its host plant

  • M. Bonini
  • Branko Šikoparija
  • C. A. Skjøth
  • G. Cislaghi
  • P. Colombo
  • C. Testoni
  • A.I.A.-R.I.M.A.®
  • POLLnet
  • M. Smith
Original Paper

Abstract

Here, we produce Ambrosia pollen source inventories for Italy that focuses on the periods before and after the accidental introduction of the Ophraella communa beetle. The inventory uses the top–down approach that combines the annual Ambrosia pollen index from a number of monitoring stations in the source region as well as Ambrosia ecology, local knowledge of Ambrosia infestation and detailed land cover information. The final inventory is gridded to a 5 × 5-km resolution using a stereographic projection. The sites with the highest European Infection levels were recorded in the north of Italy at Busto Arsizio (VA3) (European Infection level 2003–2014 = 52.1) and Magenta (MI7) (European Infection level 2003–2014 = 51.3), whereas the sites with the lowest (i.e. around 0.0) were generally located to the south of the country. Analysis showed that the European Infection level in all of Italy was significantly lower in 2013–2014 compared to 2003–2012, and this decrease was even more pronounced at the sites in the area where Ophraella communa was distributed. Cross-validations show that the sensitivity to the inclusion of stations is typically below 1% (for two thirds of the stations) and that the station Magenta (MI7) had the largest impact compared to all other stations. This is the first time that pollen source inventories from different temporal periods have been compared in this way and has implications for simulating interannual variations in pollen emission as well as evaluating the management of anemophilous plants like Ambrosia artemisiifolia.

Keywords

Aerobiology Atmosphere-biosphere analysis Digital elevation model Ecosystem analysis Invasive weed Species distribution maps 

Notes

Funding information

We acknowledge support from EU COST Action FA1203 ‘Sustainable management of Ambrosia artemisiifolia in Europe (SMARTER)’ (http://Ambrosia.eu). This work was partly financed by the following COST Short-Term Scientific Missions: COST-STSM-FA1203-020215-053027 to CT, COST-STSM-FA1203-20573 to BS, COST-STSM-FA1203-250415-058150 to MS. BS was financed by the Ministry of Science Republic of Serbia (project no. OI173002 and III43006) and Swiss National Science Foundation (project no. IZ73Z0_152348). CAS was supported by the European Commission through a Marie Curie Career Integration Grant (Project ID CIG631745).

Supplementary material

484_2017_1469_MOESM1_ESM.rar (850 kb)
ESM 1 (RAR 849 kb)

References

  1. A.I.A.-R.I.M.A.® (2009) Manuale di gestione e qualità della rete italiana di monitoraggio in Aerobiologia. Bologna, R.I.M.A.®. ISBN: 978–88–900277-1-0: 1–148Google Scholar
  2. Albertini R, Ugolotti M, Peveri S, Valenti M, Usberti I, Ridolo E, Dall’Aglio P (2012) Evolution of ragweed pollen concentrations, sensitization and related allergic clinical symptoms in Parma (northern Italy). Aerobiologia 28(3):347–354.  https://doi.org/10.1007/s10453-011-9239-6 CrossRefGoogle Scholar
  3. Allioni C (1773) Auctarium ad synopsim methodicam stirpium horti regii taurinensis. Melanges de Philosophie et de Mathematique de la Societé Royale de Turin pour les années 1770-1773(5):53–96Google Scholar
  4. Bessagnet B, Menut L, Curd G, Hodzic A, Guillaume B, Liousse C, Moukhtar S, Pun B, Seigneur C, Schulz M (2008) Regional modeling of carbonaceous aerosols over Europe-focus on secondary organic aerosols. J Atmos Chem 61(3):175–202.  https://doi.org/10.1007/s10874-009-9129-2 CrossRefGoogle Scholar
  5. Bonini M (2014) Ambrosia—Attività di Prevenzione anno 2014 (Ambrosia - prevention activities 2014). LHA Milan 1Google Scholar
  6. Bonini M, Bottero P, Milani M (2009) Prevalence and clinical severity of ragweed allergy in a health care population in magenta town: an epidemiological study on 1373 subjects. Allergy 64(Suppl 90):S429Google Scholar
  7. Bonini M, Šikoparija B, Prentović M, Cislaghi G, Colombo P, Testoni C, Grewling L, Lommen STE, Müller-Schärer H, Smith M (2015) Is the recent decrease in airborne ambrosia pollen in the Milan area due to the accidental introduction of the ragweed leaf beetle Ophraella communa? Aerobiologia 31(4):499–513.  https://doi.org/10.1007/s10453-015-9380-8 CrossRefGoogle Scholar
  8. Bonini M, Šikoparija B, Prentović M, Cislaghi G, Colombo P, Testoni C, Grewling Ł, Lommen STE, Müller-Schärer H, Smith M (2016) A follow-up study examining airborne ambrosia pollen in the Milan area in 2014 in relation to the accidental introduction of the ragweed leaf beetle Ophraella communa. Aerobiologia 32(2):371–374.  https://doi.org/10.1007/s10453-015-9406-2 CrossRefGoogle Scholar
  9. Carna P, Ivaldi C (2014) The effects of ragweed on the public health: analysis of the entrances to the emergency room in the city of Turin (Italy). Eur J Aerobiol Environ Med 2(/2014):84Google Scholar
  10. Chauvel B, Dessaint F, Cardinal-Legrand C, Bretagnolle F (2006) The historical spread of Ambrosia artemisiifolia L. Fr Herb Rec J Biogeogr 33:665–673Google Scholar
  11. Comtois P (1998) Statistical analysis of aerobiological data. In: Mandrioli P, Comtois P, Levizzani V (eds) Methods in aerobiology Bologna Pitagora EditriceGoogle Scholar
  12. EC (2005) European Commission. Image2000 and CLC2000 products and methods. Maria Vanda Nunes de Lima, European Commision, Joint Research Centre (DG JRC), Institute for Environment and Sustainability, land management unit, I-21020 Ispra. VA, Italy, pp 1–152Google Scholar
  13. Efstathiou C, Isukapalli S, Georgopoulos P (2011) A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens. Atmos Environ 45(13):2260–2276.  https://doi.org/10.1016/j.atmosenv.2010.12.008 CrossRefGoogle Scholar
  14. Essl F, Dullinger S, Kleinbauer I (2009) Changes in the spatio-temporal patterns and habitat preferences of Ambrosia artemisiifolia during its invasion of Austria. Preslia 81(2):119–133Google Scholar
  15. Essl F, Biró K, Brandes D, Broennimann O, Bullock JM, Chapman DS, Chauvel B, Dullinger S, Fumanal B, Guisan A, Karrer G, Kazinczi G, Kueffer C, Laitung B, Lavoie C, Leitner M, Mang T, Moser D, Müller-Schärer H, Petitpierre B, Richter R, Schaffner U, Smith M, Starfinger U, Vautard R, Vogl G, von der Lippe M, Follak S (2015) Biological flora of the British Isles: Ambrosia artemisiifolia. J Ecol 104(4):1069–1098CrossRefGoogle Scholar
  16. Ferrero A, and Nguyen NV, (2004) The sustainable de velopment of rice-based production systems in Europe, Proceedings of the FAO rice conference, Rome, Agriculture and Consumer ProtectionGoogle Scholar
  17. Gentili R, Gilardelli F, Bona E, Prosser F, Selvaggi A, Alessandrini A, Martini F, Nimis PL, Wilhalm T, Adorni M, Ardenghi NMG, Barni E, Bonafede F, Bonini M, Bouvet D, Buffa G, Ciappetta S, Giordana F, Faggi G, Ghiani A, Ghillani L, Marcucci R, Masin R, Morelli V, Montagnani C, Montanari S, Peccenini S, Pellizzari M, Romani E, Saiani D, Scortegagna S, Sirotti M, Truzzi A, Vignodelli M, Bagli L, Fiandri F, Siniscalco C and Citterio S (2016) Distribution map of Ambrosia artemisiifolia L. (Asteraceae) in Italy. Plant Biosystems In Press:  https://doi.org/10.1080/11263504.2016.1176966
  18. Greuter W (2006) Compositae (pro parte majore). In: W Greuter and E von Raab-Straube (eds.) Compositae. Euro+Med Plantbase—the information resource for Euro-Mediterranean plant diversity, Published on the Internet http://ww2.bgbm.org/EuroPlusMed/ [accessed 03–11-2016]
  19. Guo J-Y, Zhou Z-S, Zheng X-W, Chen H-S, Wan F-H, Luo Y-H (2011) Control efficiency of leaf beetle, Ophraella communa, on the invasive common ragweed, Ambrosia artemisiifolia, at different growing stages. Biocontrol Sci Tech 21(9):1049–1063.  https://doi.org/10.1080/09583157.2011.603823 CrossRefGoogle Scholar
  20. Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39(2):257–265.  https://doi.org/10.1111/j.1744-7348.1952.tb00904.x CrossRefGoogle Scholar
  21. Karrer G, Skjøth CA, Šikoparija B, Smith M, Berger U, Essl F (2015) Ragweed (Ambrosia) pollen source inventory for Austria. Sci Total Environ 523(0):120–128.  https://doi.org/10.1016/j.scitotenv.2015.03.108 CrossRefGoogle Scholar
  22. Müller-Schärer H, Lommen STE, Rossinelli M, Bonini M, Boriani M, Bosio G, Schaffner U (2014) Ophraella communa, the ragweed leaf beetle, has successfully landed in Europe: fortunate coincidence or threat? Weed Res 54(2):109–119.  https://doi.org/10.1111/wre.12072 CrossRefGoogle Scholar
  23. Ortmans W, Mahy G, Monty A (2016) Effects of seed traits variation on seedling performance of the invasive weed, Ambrosia artemisiifolia L. Acta Oecol 71:39–46.  https://doi.org/10.1016/j.actao.2016.01.008 CrossRefGoogle Scholar
  24. Sikoparija B, Smith M, Skjoth CA, Radisic P, Milkovska S, Simic S, Brandt J (2009) The Pannonian plain as a source of Ambrosia pollen in the Balkans. Int J Biometeorol 53(3):263–272.  https://doi.org/10.1007/s00484-009-0212-9 CrossRefGoogle Scholar
  25. Sikoparija B, Skjøth CA, Celenk S, Testoni C, Abramidze T, Alm Kübler K, Belmonte J, Berger U, Bonini M, Charalampopoulos A, Damialis A, Clot B, Dahl Å, de Weger LA, Gehrig R, Hendrickx M, Hoebeke L, Ianovici N, Kofol Seliger A, Magyar D, Mányoki G, Milkovska S, Myszkowska D, Páldy A, Pashley CH, Rasmussen K, Ritenberga O, Rodinkova V, Rybníček O, Shalaboda V, Šaulienė I, Ščevková J, Stjepanović B, Thibaudon M, Verstraeten C, Vokou D, Yankova R, Smith M (2016) Spatial and temporal variations in airborne ambrosia pollen in Europe. Aerobiologia 33(2):181–189.  https://doi.org/10.1007/s10453-016-9463-1 CrossRefGoogle Scholar
  26. Skjøth CA, Smith M, Sikoparija B, Stach A, Myszkowska D, Kasprzyk I, Radisic P, Stjepanovic B, Hrga I, Apatini D, Magyar D, Páldy A, Ianovici N (2010) A method for producing airborne pollen source inventories: an example of Ambrosia (ragweed) on the Pannonian plain. Agric For Meteorol 150(9):1203–1210.  https://doi.org/10.1016/j.agrformet.2010.05.002 CrossRefGoogle Scholar
  27. Smith M, Cecchi L, Skjoth CA, Karrer G, Sikoparija B (2013) Common ragweed: a threat to environmental health in Europe. Environ Int 61:115–126.  https://doi.org/10.1016/j.envint.2013.08.005 CrossRefGoogle Scholar
  28. Sofiev M, Siljamo P, Ranta H, Rantio-Lehtimäki A (2006) Towards numerical forecasting of long-range air transport of birch pollen: theoretical considerations and a feasibility study. Int J Biometeorol 50(6):392–402.  https://doi.org/10.1007/s00484-006-0027-x CrossRefGoogle Scholar
  29. Sofiev M, Berger U, Prank M, Vira J, Arteta J, Belmonte J, Bergmann KC, Chéroux F, Elbern H, Friese E, Galan C, Gehrig R, Khvorostyanov D, Kranenburg R, Kumar U, Marécal V, Meleux F, Menut L, Pessi AM, Robertson L, Ritenberga O, Rodinkova V, Saarto A, Segers A, Severova E, Sauliene I, Siljamo P, Steensen BM, Teinemaa E, Thibaudon M, Peuch VH (2015) MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe. Atmos Chem Phys 15(14):8115–8130.  https://doi.org/10.5194/acp-15-8115-2015 CrossRefGoogle Scholar
  30. Stucchi C (1942) L'ambrosia elatior. Nuovo Giorn Bot Ital 112Google Scholar
  31. Thibaudon M, Šikoparija B, Oliver G, Smith M, Skjøth CA (2014) Ragweed pollen source inventory for France—the second largest centre of ambrosia in Europe. Atmos Environ 83(0):62–71.  https://doi.org/10.1016/j.atmosenv.2013.10.057 CrossRefGoogle Scholar
  32. Tosi A, Wüthrich B, Bonini M, Pietragalla-Köhler B (2011) Time lag between ambrosia sensitisation and ambrosia allergy: a 20-year study (1989-2008) in Legnano, northern Italy. Swiss Med Wkly 141:w13253.  https://doi.org/10.4414/smw.2011.13253 Google Scholar
  33. US-EPA (2004) Developing Spatially Interpolated Surfaces and Estimating Uncertainty 1e169Google Scholar
  34. Vogel H, Pauling A, Vogel B (2008) Numerical simulation of birch pollen dispersion with an operational weather forecast system. Int J Biometeorol 52(8):805–814.  https://doi.org/10.1007/s00484-008-0174-3 CrossRefGoogle Scholar
  35. Zhou Z-S, Chen H-S, Zheng X-W, Guo J-Y, Guo W, Li M, Luo M, Wan F-H (2014) Control of the invasive weed Ambrosia artemisiifolia with Ophraella communa and Epiblema strenuana. Biocontrol Sci Tech 24(8):950–964.  https://doi.org/10.1080/09583157.2014.897305 CrossRefGoogle Scholar
  36. Zink, K, Kaufmann, P, Petitpierre, B, Broennimann, O, Guisan, A, Gentilini, E and Rotach, MW (2016) Numerical ragweed pollen forecasts using different source maps: a comparison for France. Int J BiometeorolAvailable online  https://doi.org/10.1007/s00484-016-1188-x, 61, 1, 23, 33

Copyright information

© ISB 2017

Authors and Affiliations

  • M. Bonini
    • 1
  • Branko Šikoparija
    • 2
  • C. A. Skjøth
    • 3
  • G. Cislaghi
    • 1
  • P. Colombo
    • 1
  • C. Testoni
    • 1
  • A.I.A.-R.I.M.A.®
    • 4
  • POLLnet
    • 5
  • M. Smith
    • 6
  1. 1.Department of Hygiene and Health Prevention, Local Health Authority ATS della Città Metropolitana di MilanoParabiagoItaly
  2. 2.BioSensе Institute—Research Institute for Information Technologies in BiosystemsUniversity of Novi SadNovi SadSerbia
  3. 3.National Pollen and Aerobiology Research Unit, Institute of Science and the EnvironmentUniversity of WorcesterWorcesterUK
  4. 4.Italian Monitoring Network in Aerobiology of the Italian Association of AerobiologyParabiagoItaly
  5. 5.BolzanoItaly
  6. 6.Institute of Science and the EnvironmentUniversity of WorcesterWorcesterUK

Personalised recommendations