Skip to main content

Phenological patterns of Spodoptera Guenée, 1852 (Lepidoptera: Noctuidae) is more affected by ENSO than seasonal factors and host plant availability in a Brazilian Savanna

Abstract

The identification of factors responsible for the population dynamics is fundamental for pest management, since losses can reach 18% of annual production. Besides regular seasonal environmental factors and crop managements, additional supra-annual meteorological phenomena can also affect population dynamics, although its relevance has been rarely investigated. Among crop pests, Spodoptera stands out due to its worldwide distribution, high degree of polyphagy, thus causing damages in several crops in the world. Aiming to distinguish the relevance of different factors shaping population dynamics of Spodoptera in an ecosystem constituted of dry and rainy seasons, the current study used circular statistics to identify phenological patterns and test if its population fluctuation is driven by El Niño-Southern Oscillation (ENSO) effect, seasonal meteorological parameters, and/or host plant availability. Samplings were done in an intercropping system, in the Brazilian Savanna, during the new moon cycles between July/2013 and June/2016. Species were recorded all year round, but demonstrated differently non-uniform distribution, being concentrated in different seasons of the year. Population fluctuations were mostly affected by the ENSO intensity, despite the contrasting seasonal meteorological variation or host plant availability in a 400-m radius. Studies involving the observation of supra-annual phenomena, although rare, reach similar conclusions in relation to Neotropical insect fauna. Therefore, it is paramount to have long-term sampling studies to obtain a more precise response of the pest populations towards the agroecosystem conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ab’Sáber AN (2003) Nos vastos espaços dos Cerrados. In: Ab’Sáber AN (ed) Os domínios de natureza no Brasil: potencialidades paisagísticas. Ateliê Editorial, São Paulo, p 151

    Google Scholar 

  2. Almeida LP, Specht A, Teston JA (2014) Fauna of Noctuidae (Lepidoptera: Noctuoidea) in a pasture area in Altamira, Eastern Amazon, Pará, Brazil. Braz J Biol 74:983–990

    CAS  Article  Google Scholar 

  3. Amorim FW, de Ávila RS Jr, de Camargo AJ et al (2009) A hawkmoth crossroads? Species richness, seasonality and biogeographical affinities of Sphingidae in a Brazilian Cerrado. J Biogeogr 36:662–674

    Article  Google Scholar 

  4. Bavaresco A, Garcia MS, Grützmacher AD et al (2002) Biology and thermal requirements of Spodoptera cosmioides (Walk.) (Lepidoptera: Noctuidae). Neotrop Entomol 31:49–54

    Article  Google Scholar 

  5. Bendicho-López A, Morais HC, Hay JD, Diniz IR (2006) Folivore caterpillars on Roupala montana Aubl.(Proteaceae) in cerrado sensu stricto. Neotrop Entomol 35:182–191

    Article  Google Scholar 

  6. Bergin TM (1991) A comparison of goodness-of-fit tests for analysis of nest orientation in western kingbirds (Tyrannus verticalis). Condor 93:164–171

    Article  Google Scholar 

  7. Brito MM, Ribeiro DB, Raniero M et al (2014) Functional composition and phenology of fruit-feeding butterflies in a fragmented landscape: variation of seasonality between habitat specialists. J Insect Conserv 18:547–560

    Article  Google Scholar 

  8. Bueno AF, Paula-Moraes SV, Gazzoni DL, Pomari AF (2013) Economic thresholds in soybean-integrated pest management: old concepts, current adoption, and adequacy. Neotrop Entomol 42:439–447

    CAS  Article  Google Scholar 

  9. Busato GR, Grützmacher AD, Garcia MS et al (2005) Exigências térmicas e estimativa do número de gerações dos biótipos “milho” e “arroz” de Spodoptera frugiperda. Pesqui Agropecuária Bras 40:329–335

    Article  Google Scholar 

  10. Barcellos AO, AKB Ramos, Vilela L et al (2008) Sustentabilidade da produção animal baseada em pastagens consorciadas e no emprego de leguminosas exclusivas, na forma de banco de proteína, nos trópicos brasileiros. Rev Bras Zootec 37:51–67

  11. Freire Júnior GBF, Diniz IR (2015) Temporal dynamics of fruit-feeding butterflies (Lepidoptera: Nymphalidae) in two habitats in a seasonal Brazilian environment. Fla Entomol 98:1207–1216

  12. Diniz IR, Morais HC, Botelho AMF et al (1999) Lepidopteran caterpillar fauna on lactiferous host plants in the central Brazilian cerrado. Rev Bras Biol 59:627–635

    CAS  Article  Google Scholar 

  13. Ferguson DC, Hilburn DJ, Wright B (1991) The Lepidoptera of Bermuda: their food plants, biogeography, and means of dispersal. Mem Entomol Soc Can 123:3–105

    Article  Google Scholar 

  14. Frost SW (1957) The Pennsylvania insect light trap. J Econ Entomol 50:287–292

    Article  Google Scholar 

  15. Grimbacher PS, Stork NE (2009) Seasonality of a diverse beetle assemblage inhabiting lowland tropical rain forest in Australia. Biotropica 41:328–337

    Article  Google Scholar 

  16. Hallett TB, Coulson T, Pilkington JG et al (2004) Why large-scale climate indices seem to predict ecological processes better than local weather. Nature 430:71–75

    CAS  Article  Google Scholar 

  17. Hallman G (1979) Importancia de algunas relaciones naturales plantas–artropodos en la agricultura de la zona calida del Tolima Central. Rev Colomb Entomol 5:19–26

    Google Scholar 

  18. Harun S, Al-Shami SA, Dambul R et al (2015) Water quality and aquatic insects study at the lower Kinabatangan River catchment, Sabah: in response to weak la niña event. Sains Malays 44:545–558

    Article  Google Scholar 

  19. Holmgren M, Scheffer M, Ezcurra E et al (2001) El Niño effects on the dynamics of terrestrial ecosystems. Trends Ecol Evol 16:89–94

    CAS  Article  Google Scholar 

  20. Hufnagel L, Kocsis M (2011) Impacts of climate change on Lepidoptera species and communities. Appl Ecol Environ Res 9:43–72

    Article  Google Scholar 

  21. IBGE (2016) Levantamento Sistemático da Produção Agrícola: Pesquisa Mensal de Previsão e Acompanhamento das Safras Agrícolas no Ano Civil ftp://ftp.ibge.gov.br/Producao_Agricola/Levantamento_Sistematico_da_Producao_Agricola_[mensal]/Fasciculo/lspa_201601.pdf. Accessed 14 Sept 2016

  22. Itioka T, Yamauti M (2004) Severe drought, leafing phenology, leaf damage and lepidopteran abundance in the canopy of a Bornean aseasonal tropical rain forest. J Trop Ecol 20:479–482

    Article  Google Scholar 

  23. Kergoat GJ, Prowell DP, Le Ru BP et al (2012) Disentangling dispersal, vicariance and adaptive radiation patterns: a case study using armyworms in the pest genus Spodoptera (Lepidoptera: Noctuidae). Mol Phylogenet Evol 65:855–870

    Article  Google Scholar 

  24. Kishimoto-Yamada K, Itioka T (2015) How much have we learned about seasonality in tropical insect abundance since Wolda (1988)? Entomol Sci 18:407–419

    Article  Google Scholar 

  25. Kishimoto-Yamada K, Itioka T, Sakai S et al (2009) Population fluctuations of light-attracted chrysomelid beetles in relation to supra-annual environmental changes in a Bornean rainforest. Bull Entomol Res 99:217–227

    CAS  Article  Google Scholar 

  26. Kishimoto-Yamada K, Itioka T, Sakai S, Ichie T (2010) Seasonality in light-attracted chrysomelid populations in a Bornean rainforest. Insect Conserv Divers 3:266–277

    Article  Google Scholar 

  27. Kovach WL (2011) Oriana—circular statistics for Windows, ver. 4. Kovach Computing Services, Wales, U.K.

  28. Marquis RJ, Morais HC, Diniz IR (2002) Interactions among cerrado plants and their herbivores: unique or typical. In: Oliveira PS, and Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a neotropical savanna. Columbia University Press, New York, pp 306–328

  29. Mitchell A, Mitter C, Regier JC (2006) Systematics and evolution of the cutworm moths (Lepidoptera: Noctuidae): evidence from two protein-coding nuclear genes. Syst Entomol 31:21–46

    Article  Google Scholar 

  30. Morellato LPC, Talora DC, Takahasi A et al (2000) Phenology of Atlantic rain forest trees: a comparative study. Biotropica 32:811–823

    Article  Google Scholar 

  31. Murúa G, Molina-Ochoa J, Coviella C (2006) Population dynamics of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) and its parasitoids in northwestern Argentina. Fla Entomol 89:175–182

    Article  Google Scholar 

  32. Nagoshi RN, Meagher RL (2004) Seasonal distribution of fall armyworm (Lepidoptera: Noctuidae) host strains in agricultural and turf grass habitats. Environ Entomol 33:881–889

    Article  Google Scholar 

  33. Nagoshi RN, Meagher RL, Hay-Roe M (2012) Inferring the annual migration patterns of fall armyworm (Lepidoptera: Noctuidae) in the United States from mitochondrial haplotypes. Ecol Evol 2:1458–1467

    Article  Google Scholar 

  34. Null J (2016) El Niño and La Niña Years and Intensities Based on Oceanic Niño Index (ONI) http://ggweather.com/enso/oni.htm. Accessed 29 Aug 2016

  35. Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  36. Oliveira CM, Auad AM, Mendes SM, Frizzas MR (2013) Economic impact of exotic insect pests in Brazilian agriculture. J Appl Entomol 137:1–15

    Article  Google Scholar 

  37. Oliveira CM, Auad AM, Mendes SM, Frizzas MR (2014) Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Prot 56:50–54

    Article  Google Scholar 

  38. Parra JRP, Milano P, Consoli FL et al (1999) Efeito da nutrição de adultos e da umidade na fecundidade de Diatraea saccharalis (Fabr.) (Lepidoptera: Crambidae). An Soc Entomológica Bras 28:49–57

    Article  Google Scholar 

  39. Pilon NAL, Udulutsch RG, Durigan G (2015) Phenological patterns of 111 Cerrado species under cultivation. Hoehnea 42:425–443

    Article  Google Scholar 

  40. Pinheiro F, Diniz IR, Coelho D, Bandeira MPS (2002) Seasonal pattern of insect abundance in the Brazilian cerrado. Austral Ecol 27:132–136

    Article  Google Scholar 

  41. Pogue M (2002) World revision of the genus Spodoptera Guenée. Mem Am Entomol Soc 43:1–202

    Google Scholar 

  42. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  43. Raimondo S, Liebhold AM, Strazanac JS, Butler L (2004) Population synchrony within and among Lepidoptera species in relation to weather, phylogeny, and larval phenology. Ecol Entomol 29:96–105

    Article  Google Scholar 

  44. Ribeiro DB, Prado PI, Brown KS Jr, Freitas AV (2010) Temporal diversity patterns and phenology in fruit-feeding butterflies in the Atlantic forest. Biotropica 42:710–716

    Article  Google Scholar 

  45. Rosenzweig C, Iglesias A, Yang XB et al (2001) Climate change and extreme weather events: implications for food production, plant diseases, and pests. Glob Change Hum Health 2:90–104

    Article  Google Scholar 

  46. Savoie KL (1988) Alimentación selectiva por especies de Spodoptera (Lepidoptera: Noctuidae) en un campo de frijol con labranza mínima. Turrialba 38:67–70

    Google Scholar 

  47. Scherrer S, Ferro VG, Ramos MN, Diniz IR (2013) Species composition and temporal activity of Arctiinae (Lepidoptera: Erebidae) in two cerrado vegetation types. Zoologia 30:200–210

    Article  Google Scholar 

  48. Shimadzu H, Dornelas M, Henderson PA, Magurran AE (2013) Diversity is maintained by seasonal variation in species abundance. BMC Biol 11:1–9

    Article  Google Scholar 

  49. Sillett TS, Holmes RT, Sherry TW (2000) Impacts of a global climate cycle on population dynamics of a migratory songbird. Science 288:2040–2042

    CAS  Article  Google Scholar 

  50. Silva FAM, Evangelista BA, Malaquias JV (2014) Normal climatológica de 1974 a 2003 da estação principal da Embrapa Cerrados. Embrapa Cerrados 321:1–99

    Google Scholar 

  51. Silva FWS, Leite GLD, Guañabens REM et al (2015) Seasonal abundance and diversity of arthropods on Acacia mangium (Fabales: Fabaceae) trees as windbreaks in the cerrado. Fla Entomol 98:170–174

    Article  Google Scholar 

  52. Specht A, Corseuil E (2002) Diversity of owlet-moth (Lepidoptera, Noctuidae) in Salvador do Sul, Rio Grande do Sul, Brazil. Rev Bras Zool 19:281–298

    Article  Google Scholar 

  53. Spera SA, Galford GL, Coe MT et al (2016) Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob Change Biol. https://doi.org/10.1111/gcb.13298

  54. Srygley RB, Dudley R, Oliveira EG et al (2010) El Nino and dry season rainfall influence host plant phenology and an annual butterfly migration from Neotropical wet to dry forests. Glob Change Biol 16:936–945

    Article  Google Scholar 

  55. Stenseth NC, Mysterud A (2005) Weather packages: finding the right scale and composition of climate in ecology. J Anim Ecol 74:1195–1198

    Article  Google Scholar 

  56. Torres JA (1992) Lepidoptera outbreaks in response to successional changes after the passage of Hurricane Hugo in Puerto Rico. J Trop Ecol 8:285–298

    Article  Google Scholar 

  57. Vilarinho EC, Fernandes OA, Hunt TE, Caixeta DF (2011) Movement of Spodoptera frugiperda adults (Lepidoptera: Noctuidae) in maize in Brazil. Fla Entomol 94:480–488

    Article  Google Scholar 

  58. Vilela EF, Zucchi RA (2015) Pragas introduzidas no Brasil: insetos e ácaros. São Paulo, Fealq, 908 p

    Google Scholar 

  59. Wallner WE (1987) Factors affecting insect population dynamics: differences between outbreak and non-outbreak species. Annu Rev Entomol 32:317–340

    Article  Google Scholar 

  60. Westbrook JK, Nagoshi RN, Meagher RL et al (2016) Modeling seasonal migration of fall armyworm moths. Int J Biometeorol 60:255–267

    CAS  Article  Google Scholar 

  61. White TCR (2008) The role of food, weather and climate in limiting the abundance of animals. Biol Rev 83:227–248

    CAS  Article  Google Scholar 

  62. Wilson RJ, Maclean IM (2011) Recent evidence for the climate change threat to Lepidoptera and other insects. J Insect Conserv 15:259–268

    Article  Google Scholar 

  63. Wolda H (1988) Insect seasonality: why? Annu Rev Ecol Syst 19:1–18

    Article  Google Scholar 

  64. Zanuncio JC, Zanuncio TV, Lopes ET, Ramalho FS (2000) Temporal variations of Lepidoptera collected in an Eucalyptus plantation in the State of Goiás, Brazil. Neth J Zool 50:435–443

    Article  Google Scholar 

  65. Zar JH (2010) Circular distributions: hypothesis testing. In: Zar JH (ed) Biostatistical analysis, 5th edn. Pearson Prentice Hall, Upper Saddle River, New Jersey, pp 624–665

    Google Scholar 

  66. Zenker MM, Botton M, Teston JA, Specht A (2010) Noctuidae moths occurring in grape orchards in Serra Gaúcha, Brazil and their relation to fruit-piercing. Rev Bras Entomol 54:288–297

    Article  Google Scholar 

Download references

Acknowledgements

To Pollyanna Nunes de Otanásio, Vander Célio de Matos Claudino, Marcia Danyelle Ribeiro Bernardes and Fernando Ferreira Martins for aiding in collecting and sorting the insects, Dr. Fernando Antonio Macena da Silva for providing the meteorological data.

Funding

To research funding from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (procs. n°. 403376/2013-0, 476691/2013-3, 47304/2013-8 and 308247/2013-2) and Empresa Brasileira de Pesquisa Agropecuária (SEG MP2 n° 02.13.14.006.00.00).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mônica Piovesan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Piovesan, M., Specht, A., Carneiro, E. et al. Phenological patterns of Spodoptera Guenée, 1852 (Lepidoptera: Noctuidae) is more affected by ENSO than seasonal factors and host plant availability in a Brazilian Savanna. Int J Biometeorol 62, 413–422 (2018). https://doi.org/10.1007/s00484-017-1450-x

Download citation

Keywords

  • Armyworms
  • Cerrado
  • Circular statistics
  • Soybean