International Journal of Biometeorology

, Volume 62, Issue 5, pp 741–771 | Cite as

Biometeorological forecasts for health surveillance and prevention of meteor-tropic effects

  • Luis B. Lecha Estela
Special Issue: Latin America/Caribbean


An early method of biometeorological forecasts was developed for Cuba during the late 90s. It was based on the relationship between the daily occurrence of massive health crisis and the magnitude of the 24-h differences of partial density of oxygen in the air (PODA index). Ten years later, applying new technological facilities, a new model was developed in order to offer operational biometeorological forecast to Cuban health institutions. After a satisfactory validation process, the official bioforecast service to health institutions in Villa Clara province began on February of 2012. The effectiveness had different success levels: for the bronchial asthma crisis (94%), in the hypertensive crisis (88%), with the cerebrovascular illnesses (85%), as well as migraines (82%) and in case of cardiovascular diseases (75%) were acceptable. Since 2008, the application of the model was extended to other regions of the world, including some national applications. Furthermore, it allowed the beginning of regional monitoring of meteor-tropic effects, following the occurrence and movement of areas with higher weather contrasts, defined according to the normalized scale of PODA index. The paper describes the main regional results already available, with emphasis in the observed meteor-tropic effects increasing in all regions during recent years. It coincides with the general increase of energy imbalance in the whole climate system. Finally, the paper describes the current development of new global biometeorological forecast services.


Biometeorological forecasts Meteor-tropic effects Partial oxygen density of air PronBiomet model Health watch and warning systems 

Supplementary material

484_2017_1405_MOESM1_ESM.docx (421 kb)
ESM 1 (DOCX 420 kb).


  1. Alisov BP (1950) Climatic zones of foreign countries [in Russian] Geographical Pub Moscow, p 284Google Scholar
  2. Baranovska M (1984) Biometeorological forecasts as form of preserving health and man's activities [in Russian] Report to the Workshop “Results of biometeorological investigations on weather impacts in different man´s activities and it prevention” Polish Met. Service, Warsaw, Poland, p 12–15Google Scholar
  3. Bucher K, Haase C (1993) Meteorotropy and medical-meteorological forecasts. Experientia 49(9):759–768CrossRefGoogle Scholar
  4. Budiko MI and Tzitzenko GV (1960) Climate factors and the heat sensations of man [in Russian]. Geographical Series 3. URSS Academy of Sciences (ed.), Moscow: 3–11Google Scholar
  5. Butieva IV and Ovcharova VF (1979) Medical climatology. BME 3rd ed., vol 10. Cited in Materials of Meteorological Researches 8. Annex: principles for the evaluation of the genesis of local climate according to the predominant weather types [in Russian]. URSS Geophysical Committee and Institute of Geography URSS Academy of Sciences (eds.):101–156Google Scholar
  6. Chubukov LA (1949) Complex climatology [in Russian]. USSR Academy of Sciences (ed.), Moscow-LeningradGoogle Scholar
  7. Chubukov LA (1956) Fundamentals of climatotherapy [in Russian]. In: Basis of climatotherapy, vol. 1. Medicine (ed.), Moscow: 75-96Google Scholar
  8. Chubukov LA (1977) Problems of complex climatology [in Russian]. URSS Society of Geography (ed.), MoscowGoogle Scholar
  9. CPHEM—Centro Provincial de Higiene, Epidemiología y Microbiología (2013) Sistema de Vigilancia para la detección y prevención de los efectos meteoro-trópicos sobre la salud humana. Subsistema para la hipertensión arterial. Santa ClaraGoogle Scholar
  10. De Rudder B (1952) Grundiβ einer Meteorobiologie des Menschen, 3. Springer (ed.), Berlin-Göttingen-Heidelberg, 303 SGoogle Scholar
  11. Davis RE, Kalkstein LS (1990a) Using a spatial synoptic climatological classification to asses changes in atmospheric pollution concentrations. Phys Geogr 11(4):320–342CrossRefGoogle Scholar
  12. Davis RE, Kalkstein LS (1990b) Development of an automated spatial synoptic climatological classification. Int J Climatol 10:769–794CrossRefGoogle Scholar
  13. De la Vega T, Lecha L and Alerm A (2010) Prevención y mitigación de los efectos del estado del tiempo sobre la salud humana. Parte 1: las crisis agudas de asma bronquial (CAAB). In: Salud y Desastres, la experiencia cubana Vol 2. Ciencias Médicas (ed.): 85-98Google Scholar
  14. Díaz H (2015) Documented report on heat stroke attentions at emergencies during the summer of 2015 in Villa Clara. ISB Expert Meeting on Biometeorological and Bioclimatic Forecasts. HavanaGoogle Scholar
  15. Dzerdzeievskii BL (1968) Mechanisms of the atmospheric circulation in the northern hemisphere during the XX century [in Russian]. In: Research results during the International Geophysical Year. The atmospheric circulation. Inst of Geography (ed.), URSS Academy of Sciences: 56–67Google Scholar
  16. Estrada A, Moya A, Lecha L and Ciómina E (2007) Los pronósticos biometeorológicos: una vía para reducir las crisis de salud en la población cubana. In: Memorias del IV Congreso Cubano de Meteorología, La HabanaGoogle Scholar
  17. Fedorov EE (1925a) Climate such as the complex state of weather types [in Russian]. Meteor-Forschung 7Google Scholar
  18. Fedorov EE (1925b) Behavior of monthly climate through the analysis of the day-by-day weather [in Russian]. Geogr Meteorol 2(3)Google Scholar
  19. Fedorov EE (1927a) Influences of the weather types on the growth of the wheat between the phase of formation of the spikes and the flowering [in Russian]. Sci Agron 7(8)Google Scholar
  20. Fedorov EE (1927b) Das klima als wettergesamtheit. Das Wetter H 6(7)Google Scholar
  21. Fedorov EE (1932) A complex method in climatology and its applications to agriculture. Trenton University, New Jersey Bureau of Plant Industry, Circular 207Google Scholar
  22. Fedorov EE (1934) Die biziehung zwischen dem ernteertrag und der entwicklungsdauer von feldpilanzen und den “Klimatischen” wettertypen. Bioklimatische Beiblātter der Meteorolog., Zeitschrift H 4Google Scholar
  23. Fedorov EE (1936) Feldkultur und klima bewestet nach den methoden der komplexen Klimatologie. Bioklimatische Beiblātter der Meteorolog., Zeitschrift H 1Google Scholar
  24. Fernández de Arroyabe P and Lecha L (2008) Validación en el norte de España de dos sistemas de alerta sanitarios basados en la idea del contraste meteorológico extremo. In: Publicaciones de la Asoc Española Climatología: El cambio climático regional y sus impactos, Serie A(6) ISBN: 978-84-612-6051-5
  25. Fernández de Arróyabe P, Lecha L and Schmidt F (2015) Desarrollo de servicios climáticos orientados hacia la salud pública, basados en aplicaciones móviles: OxyAlert. De la Riva J, Ibarra P, Montorio R and Rodríguez M (eds.) In: Análisis espacial y representación geográfica: innovación y aplicación; 591-599. Universidad de Zaragoza-AGE. ISBN: 978-84-92522-95-8Google Scholar
  26. Howe CF (1925) The summer and winter weather of selected cities in North America. Mon Weather Rev 53(10):45–51CrossRefGoogle Scholar
  27. INSMET - Institute of Meteorology (2009) Monthly climate bulletin, DecemberGoogle Scholar
  28. ISB - International Society of Biometeorology (1967) Proceeding of the IV International Congress of Biometeorology. SW Tromp and WH Weihe (eds.), AmsterdamGoogle Scholar
  29. Jendritzky G (1987) Human biometeorological forecast procedures of the German weather service. In: Proceedings of the WMO-WHO-UNEP Symposium on Climate and Human Health in Leningrad Vol 1: 185–196Google Scholar
  30. Jendritzky G (1993) The atmospheric environment—an introduction. Experientia 49(9):733–740CrossRefGoogle Scholar
  31. Jendritzky G and Bucher K (1993) Meteorological fundamentals and their utilization in Germany In: Proceeding of The Weather and Health Workshop. AR Maarouf (ed.), Ottawa, Ontario, Canada, p 42–59Google Scholar
  32. Jendritzky G, De Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56(3):421–428CrossRefGoogle Scholar
  33. Jrguian AJ (1984) Remembering to Leonid A. Chubukov [in Russian]. In: Materials of Meteorological Investigations, 8. URSS Geophysical Committee and Inst of Geography URSS Academy of Sciences (eds.):1–3Google Scholar
  34. Kalkstein LS (1984) The impact of winter weather on human mortality. In: Climate impact assessment: United States, US Department of Commerce: 21-23Google Scholar
  35. Kalkstein LS (1988) The impacts of predicted climate change on human mortality. Publ Climatol 41:121–127Google Scholar
  36. Kalkstein LS (1989) The impact of CO2 and trace gas-induced climate changes upon human mortality. In: Smith JB and Tirpak DA (eds.) The potential effects of global climate change on the United States. Appendix G Health: 1-35Google Scholar
  37. Kalkstein LS (1995) Lessons from a very hot summer. Lancet 346:857–859CrossRefGoogle Scholar
  38. Kalkstein LS (1996) A new spatial synoptic classification: application to air mass analysis. Int J Climatol 16(8):1–22Google Scholar
  39. Kalkstein LS, Jamason PF, Greene JS (1996) The Philadelphia hot weather-health watch/warning system: development and application. Bull Amer Met Soc 77(7):56–64CrossRefGoogle Scholar
  40. Karpenko VN (1986) Directions of scientific cooperated work in biometeorology under development in the community of socialist countries [in Russian]. In: Materials of Meteorological Investigations 11. Bioclimatic Aspects. Soviet Geophysical Committee - Institute of Geography - Institute of Climatotherapy and Physiotherapy (eds.): 33–35 ISSN 0206–6564Google Scholar
  41. Kosherguina VM (1933) Quantity of solar radiation that correspond with different weather types in the region of Leningrad during the months of the vegetative period [in Russian]. News from Main Geoph Observatory 2(3):12–19Google Scholar
  42. Lapinel B (1988) La circulación atmosférica y las características espacio-temporales de las lluvias en Cuba. PhD Thesis. Institute of Meteorology, HavanaGoogle Scholar
  43. Lecha L (1984) The main climate forming factors and peculiarities of the central region of Cuba [in Russian]. PhD Thesis. Institute of Geography, URSS Academy of Sciences, MoscowGoogle Scholar
  44. Lecha L (1987) Las condiciones de calor sofocante en la región central de Cuba. Rev Cienc Tierra Espacio 13:56–58Google Scholar
  45. Lecha L (1988) Bioclimatology in a hot and humid climate environment [in Russian]. In: proceeding of the climate and health symposium, Vol. 2, VP Borisenko and VN Karpenko (eds.):208-232Google Scholar
  46. Lecha L (1992) Caracterización compleja del clima de Cuba. Rev Cub Met 5(1):94–105Google Scholar
  47. Lecha L (1993) Estudio bioclimático de la provincia de Cienfuegos. Academia (ed.), La HabanaGoogle Scholar
  48. Lecha L (1995) Una aproximación al pronóstico de algunas enfermedades del hombre a partir de predictores meteorológicos. Rev Medicentro 11(2), Julio – Diciembre: 16-24Google Scholar
  49. Lecha L (1997) Would climate and weather affect the quality of tourism? WMO tech pub 822. WCASP 42:13–24Google Scholar
  50. Lecha L (1998) Biometeorological classification of daily weather types for the humid tropics. Int J Biometeorol 42(2):77–83CrossRefGoogle Scholar
  51. Lecha L (1999) Effects of climate variability on the health of the Cuban population. WMO Bull 48(1):18–22Google Scholar
  52. Lecha L (2013) Validación del servicio de pronósticos biometeorológicos en el estado de Jalisco, México. Parte 1: el modelo numérico y sus características. In: Memorias del XXII Congreso de la Organización Méxicana de Meteorólogos AC (OMMAC), Veracruz, México: 43–55Google Scholar
  53. Lecha L and Delgado T (1996) On a regional health watch and warning system. In: proceedings of the 14th Int. congress of biometeorology, Ljubljana, Slovenia, part 2, Vol 3:94-107Google Scholar
  54. Lecha L and Florido A (1989) Principales características climáticas del régimen térmico del archipiélago cubano. Academia (ed.), La HabanaGoogle Scholar
  55. Lecha L, Linares F (1992) El golpe de calor en la avicultura. Propuestas para su control y pronóstico. Rev Cub Cienc Avícola 19(1):4–8Google Scholar
  56. Lecha L, Llanes A (1988) Características estacionales de la circulación atmosférica sobre Cuba. Rev Cub Met 1(1):49–56Google Scholar
  57. Lecha L and Méndez T (1981) Relación entre la cardiopatía isquémica y una selección de parámetros meteorológicos. In: Proceeding of the 1st National Congress of cardiology and cardiovascular surgery, Cienfuegos, Cuba: 12–19Google Scholar
  58. Lecha L, Acosta T, Pérez M, Taboada P, Avila M (1991) Efectos del tiempo y el clima sobre la crianza de aves de Ceba. Parte I Rev Cub Ciencia Avícola 18(2):184–192Google Scholar
  59. Lecha L, Paz LR and Lapinel B (1994) El clima de Cuba. Academia (ed.), La HabanaGoogle Scholar
  60. Lecha L, Fernández de Arróyabe P, Ciómina E and De la Vega T (2010) Validación del servicio global de pronósticos biometeorológicos. Resultados de Cuba y España. In: Salud y Desastres, la experiencia cubana, Vol 2. Ciencias Médicas (ed.):35–45Google Scholar
  61. Lecha L, Luján O, Trujillo IL (2014) The global monitoring of meteor-tropic effects: results for the region of North America and the Caribbean. In: Proceeding of XX Congress of Int Soc Biomet, ClevelandGoogle Scholar
  62. Lecha L, García D, Carvajal E (2015) ¿Ocurren olas de calor en Cuba? Rev Espacio Geogr 18(3):517–541 ISSN 1516–9375Google Scholar
  63. Maksimov SA (1938) Weather types associated to the different air masses that influence on Moscow in the summer months [in Russian]. J Inst Geogr 28, USSR Academy of SciencesGoogle Scholar
  64. Maksimov SA (1940) Reference list from 15 years of work applying the complex climatology method [in Russian]. Meteorol Hydrol 1(2)Google Scholar
  65. Martín D, Lecha L (2012) La variabilidad espacio-temporal del régimen térmico en España como fundamento para evaluar los efectos potenciales del estado del tiempo sobre la salud humana. In: Proceeding of the VIII congress of the Spanish Association of Climatology, Salamanca: 63–71
  66. Martín D, Lecha L, Olcina J, Fernández P (2012) Clasificación compleja y objetiva de los estados del tiempo diarios, según la estructura del régimen térmico del aire y otros indicadores biometeorológi-cos. In: Proceeding of the VIII Congress of the Spanish Association of Climatology, Salamanca
  67. Masters J (2010) The future of intense winter storms
  68. Masters J (2014) April 27-30 a severe weather outbreak: 39 dead, $1 billion+ in damage. Posted on may 1, 2014 at 5:24 PM (
  69. Mezernitzkii AG (1937) Medical meteorology [in Russian]. GIMKK (ed.), YaltaGoogle Scholar
  70. MGO – Main Geophysical Observatory (1978a) Regulations for weather stations located in the climatotherapeutic zones of the URSS [in Russian]. LeningradGoogle Scholar
  71. MGO – Main Geophysical Observatory (1978b) Recommendations for the analysis of the biometeorological components of the urban climate in the big cities of the URSS [in Russian]. LeningradGoogle Scholar
  72. Monteagudo L, Lecha L, Vergara C, García D (2015) Anomalies detected in hypertensive patients due to the influence of meteor-tropic effects. ISB expert meeting on biometeorological and bioclimatic forecasts, HavanaGoogle Scholar
  73. National Climate Data Center (2014) Global analysis 2014 (
  74. Nichols ES (1925) A classification of weather types. Mon Weather Rev 53(10):8–19CrossRefGoogle Scholar
  75. Nichols ES (1927) Frequencies of weather types at San José, California. Mon Weather Rev 55(9):22–30CrossRefGoogle Scholar
  76. Nong Thi Loc (1987): Influence of temperature and humidity conditions on the bodies of Vietnamese people. In: Proceeding of the Climate and Health Symposium in Leningrad. WMO-WHO-UNEP (eds.), Vol 2:42Google Scholar
  77. Nuevo Atlas Nacional de Cuba (1988) Sección VI: el clima y los recursos climáticos de Cuba. Agencia Cartográfica Española e Inst Cubano Geodesia y Cartografía (eds.), Madrid – La HabanaGoogle Scholar
  78. Ovcharova VF (1958) Changes in the superior nervous activity and gassy exchange in animals during acclimatization to different climate conditions [in Russian]. Probl Exp Climatother 3:23–29Google Scholar
  79. Ovcharova VF (1963) Changes in the superior nervous activity and gassy exchange in animals along the different seasons of the year [in Russian]. Problems of complex climatology, USSR Academy of Sciences (eds.):141-149Google Scholar
  80. Ovcharova VF (1981) Calculation of the oxygen content in the air based upon meteorological parameters (pressure, temperature and humidity) to forecast the effects of hypoxia conditions [in Russian]. Probl Climatother Physiother Phys Cult 2:29–34Google Scholar
  81. Ovcharova VF (1987a) A new approach to the forecast of meteor-pathological reactions [in Russian]. Probl Climatother Physiother Phys Cult 5:40–44Google Scholar
  82. Ovcharova VF (1987b) Homeokines in weather hypoxia and hyperoxia. In: proceeding of the climate and health symposium. WHO-WMO-UNEP (eds.), Vol 2:149Google Scholar
  83. Reiter R (1960) Meteorobiologie und elektrizität der atmosphere. Akamemische erlagsges, LeipzigGoogle Scholar
  84. Remizov NA (1934) Notes on medical climatology and meteorology [in Russian]. Biomedic (ed.), MoscowGoogle Scholar
  85. Savina SS and Jmelevskaia LV (1984) Atmospheric circulation. Dynamic of the atmospheric circulation processes during the XX century [in Russian]. In: Materials of meteorological investigations, 9. URSS Geophysical Committee and Institute of Geography URSS Academy of Sciences (eds.), MoscowGoogle Scholar
  86. Switzer JE (1925) Weather types in the climates of Mexico, the Canal Zone and Cuba. Mon Weather Rev 53(10):30–35CrossRefGoogle Scholar
  87. Tromp SW (1963) Medical Biometeorology. Elsevier Pub Co, AmsterdamGoogle Scholar
  88. U.S. Global Change Research Program (2009) U.S. climate impacts report in 2009. (
  89. Voronin IM (1954) Experimental study of the effects of climatotherapeutic factors on human organism [in Russian]. In: Documents of the 2nd International Conference on Experiences in Climatotherapy [in Russian]. Moscow: 25-27Google Scholar
  90. Voronin IM, Spiridonov FV, Ayitskii YA, Savelev EV, Zenfil LB (1958) Variability of gas exchange, skin temperature and spastic reactions in sick and healthy people during acclimatization to the marine climate of Yalta and Feodosia cities [in Russian]. Probl Exp Climatother 3:24–31Google Scholar
  91. Weihe WH (1992) Adaptation to weather fluctuations. In: Proceeding of the Weather and Human Health Workshop. AR Maarouf (ed.), Ottawa: 1–12Google Scholar

Copyright information

© ISB 2017

Authors and Affiliations

  1. 1.Center of Environmental Researches and Services of Villa ClaraSanta ClaraCuba

Personalised recommendations