Skip to main content

Advertisement

Log in

A heat vulnerability index to improve urban public health management in San Juan, Puerto Rico

  • Special Issue: Latin America/Caribbean
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Increased frequency and length of high heat episodes are leading to more cardiovascular issues and asthmatic responses among the population of San Juan, the capital of the island of Puerto Rico, USA. An urban heat island effect, which leads to foci of higher temperatures in some urban areas, can raise heat-related mortality. The objective of this research is to map the risk of high temperature in particular locations by creating heat maps of the city of San Juan. The heat vulnerability index (HVI) maps were developed using images collected by satellite-based remote sensing combined with census data. Land surface temperature was assessed using images from the Thermal Infrared Sensor flown on Landsat 8. Social determinants (e.g., age, unemployment, education and social isolation, and health insurance coverage) were analyzed by census tract. The data were examined in the context of land cover maps generated using products from the Puerto Rico Terrestrial Gap Analysis Project (USDA Forest Service). All variables were set in order to transform the indicators expressed in different units into indices between 0 and 1, and the HVI was calculated as sum of score. The tract with highest index was considered to be the most vulnerable and the lowest to be the least vulnerable. Five vulnerability classes were mapped (very high, high, moderate, low, and very low). The hottest and the most vulnerable tracts corresponded to highly built areas, including the Luis Munoz International Airport, seaports, parking lots, and high-density residential areas. Several variables contributed to increased vulnerability, including higher rates of the population living alone, disabilities, advanced age, and lack of health insurance coverage. Coolest areas corresponded to vegetated landscapes and urban water bodies. The urban HVI map will be useful to health officers, emergency preparedness personnel, the National Weather Service, and San Juan residents, as it helps to prepare for and to mitigate the potential effects of heat-related illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abel JR, Dietz R (2014) The causes and consequences of Puerto Rico’s declining population. Federal Reserve Bank of New York Current issues in Economics and Finance 20:1–8

    Google Scholar 

  • Abrahamson V, Wolf J, Lorenzoni I, Fenn B, Kovats S, Wilkinson P, Adger WN, Raine R (2008) Perceptions of heatwave risks to health: interview-based study of older people in London and Norwich. UK J Public Health 31:119–126 29

    Article  Google Scholar 

  • ACS, 2013. American Community Survey and Puerto Rico Community Survey 2013 Subject Definitions. https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html

  • Bao J, Li X, Yu C (2015) The construction and validation of the heat vulnerability index, a review. Int. J. Environ. Res. Public Health 2015(12):7220–7234. doi:10.3390/ijerph120707220

    Article  CAS  Google Scholar 

  • Barsi, J.A., J.L. Barker, and J. R. Schott (2003). An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. IGARSS03, 21–25, Centre de Congres Pierre Baudis, Toulouse, France.

  • Barsi, J.A., J.R. Schott, F.D. Palluconi, and S. J. Hook 2005. Validation of a web-based atmospheric correction tool for single thermal band instruments. Earth Observing Systems X, Proc. SPIE, San Diego, CA. Vol. 5882

  • Basu R, Malig B (2011) High ambient temperature and mortality in California: exploring the roles of age, disease, and mortality displacement. Environ Res 111(2011):1286–1292

    Article  CAS  Google Scholar 

  • Blake, R., A. Grimm, T. Ichinose, R. Horton, S. N. Gaffi, S. Jiong, D. Bader, L. D. Cecil, 2011. Urban climate: processes, trends, and projections. Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network, C. Rosenzweig, W. D. Solecki, S. A. Hammer, S. Mehrotra, Eds., Cambridge University Press, Cambridge, UK, 43–81.

  • Chang Cao, Xuhui Lee, Shoudong Liu, Natalie Schultz, Wei Xiao, Mi Zhang & Lei Zhao. 2016. Urban heat islands in China enhanced by haze pollution. NATURE COMMUNICATIONS | doi:10.1038/ncomms12509

  • Chan EYY, Goggins WB, Kim JJ, Griffiths SM (2012) A study of intracity variation of temperature-related mortality and socioeconomic status among the Chinese population in Hong Kong. J Epidemiol Community Health 66(4):322–327

    Article  Google Scholar 

  • Chuang, W.C., Gober, P. 2015. Predicting hospitalization for heat-related illness at the census-tract level: accuracy of a generic heat vulnerability index in Phoenix, Arizona (USA) Volume 123 | number 6 Environmental Health Perspectives doi:10.1289/ehp.1307868

  • Chung B, Guldmann JM (2014) Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landsc Urban Plan 125(2014):76–88

    Article  Google Scholar 

  • Coll C., J. M. Galve, J.M. Sánchez, and V. Caselles (2010)_. Validation of Landsat-7/ETM+ thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Trans. Geosci. Remote Sens., vol. 48, no. 1, pp. 547–555.

  • Colón, J. 2015. Puerto Rico’s future at stake. Sciences. Editorial 11 SEPTEMBER 2015 • VOL 349 ISSUE 6253 www.sciencemag.org on September 10, 2015

  • De La Rocque S, Michel V, Plazanet D, Pin R (2004) 2004. Remote sensing and epidemiology: examples of applications for two vector-borne diseases. Comparative immunology. Microbiology & Infectious Diseases 27:331–341

    CAS  Google Scholar 

  • Dugord PA, Lauf S, Schuster C, Kleinschmit B (2014) Land use patterns, temperature distribution, and potential heat stress risk—the case study. Berlin, Germany. Comput Environ Urban Syst 48:86–98

    Article  Google Scholar 

  • Ebi KL, Teisberg TJ, Kalkstein LS, Robinson L, Weiher RF (2004) Heat watch/ warning systems save lives: estimated costs and benefits for Philadelphia 1995–98. Bull Am Meteorol Soc 85:1067–1073

    Article  Google Scholar 

  • Elías-Boneta A, Toro MJ, Garcia O, Torres R, Palacios AC (2015) High prevalence of overweight and obesity among a representative sample of Puerto Rican children. BMC Public Health 15:219. doi:10.1186/s12889-015-1549-0

    Article  Google Scholar 

  • Elías-Boneta A, Toro MJ, García O, Torres R, Palacios C (2015) High prevalence of overweight and obesity among a representative sample of Puerto Rican children. BMC Public Health 15:219 doi:10.1186/s12889-015-1549-0

  • EPA. 2008. Reducing Urban Heat Islands: Compendium of Strategies. Chapter 1. Urban Heat Island Basics. pp. 22. http://www2.epa.gov/heat-islands/heat-island-compendium

  • Filleul L, Cassadou S, Médina S, Fabres P, Lefranc A, Eilstein D et al (2006) The relation between temperature, ozone, and mortality in nine French cities during the heat wave of 2003. Environ Health Perspect 114:344–347. doi:10.1289/ehp.8328

    Article  Google Scholar 

  • Fischer PH, Brunekreef B, Lebret E (2003) Air pollution related deaths during the 2003 heat wave in the Netherlands. Atmos Environ 38:1083–1085. doi:10.1016/j.atmosenv. 2003.11.010

    Article  Google Scholar 

  • Gould WA, Alarcón C, Fevold B, Jiménez ME, Martinuzzi S, Potts G, Quiñones M, Solórzano M, Ventosa E (2008) The Puerto Rico gap analysis project. Volume 1: land cover, vertebrate species distributions, and land stewardship. Gen. Tech. Rep. IITF-GTR-39. Río Piedras, PR: U.S. Department of Agriculture, Forest Service, International Institute of Tropical Forestry, p 165

    Book  Google Scholar 

  • Habeeb D, Vargo J, Stone B Jr (2015) Rising heat wave trends in large US cities. Nat Hazards 76:1651–1665. doi:10.1007/s11069-014-1563-z

    Article  Google Scholar 

  • Hayhoe, K. 2013. Quantifying key drivers of climate variability and change for Puerto Rico and the Caribbean. Agreement Number G10AC00582. Date of Report: April 28, 2013. Available at: http://caribbeanlcc.org/puerto-ricos-first-downscaled-climate-projections-data-now-available

  • Ho HC, Knudby A, Sirovyak P, Xu Y, Hodul M, Henderson SB (2014) Mapping maximum urban air temperature on hot summer days. Remote Sens Environ 154:38–45

    Article  Google Scholar 

  • Ho, H. C., Knudby, A., Walker, B. B., & Henderson, S. B. 2016. Delineation of spatial variability in the temperature-mortality relationship on extremely hot days in Greater Vancouver, Canada. Environ Health Perspective

  • IPCC, 2007: Climate Change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, pp. 976.

  • Johnson DP, Stanforth A, Lulla V, Luber G (2011) Developing an applied extreme heat vulnerability index utilizing socioeconomic and environmental data. Appl Geogr 35(2012):23–e31

    Google Scholar 

  • Kalkstein L, Sheridan S, Kim KR, Lee DG, Choi YJ (2011) The implementation of a national network of heat/health warning systems in the Republic of Korea. Epidemiology 22:S179

    Article  Google Scholar 

  • Kalkstein AJ, Sheridan SC (2007) The social impacts of the heat-health watch/warning system in phoenix, Arizona: assessing the perceived risk and response of the public. Int J Biometeorol 52:43–55 27

    Article  Google Scholar 

  • Kardinal Jusuf S, Wong NH, Hagen E, Anggoro R, Hong Y (2007) The influence of land use on the urban heat island in Singapore. Habitat International 31(2007):232–242

    Article  Google Scholar 

  • Kim S, Ryu Y (2015) Describing the spatial patterns of heat vulnerability from urban design perspectives. International Journal of Sustainable Development & World Ecology 22(3):189–200

    Article  Google Scholar 

  • Kumar D, Shekhar S (2015) Statistical analysis of land surface temperature–vegetation indexes relationship through thermal remote sensing. Ecotoxicol Environ Saf 121(2015):39–44

    Article  CAS  Google Scholar 

  • Landsat 8 (L8) Data Users Handbook 2015. United States Geologic Survey Document LSDS-1574, Version 1.0. Sioux Falls, SD. Retrieved on 9/15/2015 from http://landsat.gov/documents/Landsat8DataUsersHandbook.pdf

  • Liu, Y., Hu, J., Snell-Feikema, I., VanBemmel, M.S., Lamsal, A., Wimberly, M.C. 2015. Software to facilitate remote sensing data access for disease early warning systems. Environmental Modelling & Software xxx (2015) 1e11. Article in press.

  • Loughnan, M., Tapper, N., Phan, T. 2014. Identifying vulnerable populations in subtropical Brisbane, Australia: a guide for heatwave preparedness and health promotion. Hindawi Publishing Corporation ISRN Epidemiology Volume 2014, pp. 12 Article ID 821759, doi: 10.1155/2014/821759

  • Lowe D, Ebi KL, Forsberg B (2011) Heatwave early warning systems and adaptation advice to reduce human health consequences of heatwaves. Int J Environ Res Public Health 8:4623–4648

    Article  Google Scholar 

  • Maimaitiyiming M, Ghula A, Tiyip T, Pla F, Latorre-Carmona P, Halik Ü, Sawut M, Caetano M (2014) Effects of green space spatial pattern on land surface temperature: implications for sustainable urban planning and climate change adaptation. ISPRS J Photogramm Remote Sens 89(2014):59–66

    Article  Google Scholar 

  • Manteghi G, bin limit H, Remaz D (2015) Water bodies an urban microclimate: a review. Mod Appl Sci 9(6):2015. doi:10.5539/mas.v9n6p1

  • Méndez-Lázaro P, Muller-Karger FE, Otis D, McCarthy M, Peña-Orellana M (2014) Assessing climate change effects on dengue incidence in San Juan, Puerto Rico. Int J Environ Res Public Health 11(9):9409-9428

  • Méndez-Lázaro P, Martínez-Sánchez O, Méndez-Tejeda R, Rodríguez E, Morales E, Schmitt-Cortijo N (2015) Extreme heat events in San Juan Puerto Rico: trends and variability of unusual hot weather and its possible effects on ecology and society. J Climatol Weather Forecasting 3:135. doi:10.4172/2332-2594.1000135

    Article  Google Scholar 

  • Méndez-Lázaro PA, Pérez-Cardona CM, Rodríguez E, Martinez O, Taboas M, Bocanegra A, Mendez-Tejeda R (2016) Climate change, heat, and mortality in the tropical urban area of San Juan, Puerto Rico. Int J Biometeorol 2016. doi:10.1007/s00484-016-1291-z

  • Mohan M, Kandya A (2015) Impact of urbanization and land-use/land-cover change on diurnal temperature range. A case study of tropical urban airshed of India using remote sensing data Science of the Total Environment 506–507(2015):453–465

    Google Scholar 

  • Morabito M, Crisci A, Gioli B, Gualtieri G, Toscano P, Di Stefano V et al (2015) Urban-hazard risk analysis: mapping of heat-related risks in the elderly in major Italian cities. PLoS One 10(5):e0127277. doi:10.1371/journal.pone.0127277

    Article  CAS  Google Scholar 

  • Norton BA, Coutts AM, Livesley SJ, Harris RJ, Hunter AM, Williams NS (2015) Planning for cooler cities: a framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc Urban Plan 134:127–138

    Article  Google Scholar 

  • Ostro BD, Roth LA, Green RS, Basu R (2009) Estimating the mortality effect of the July 2006 California heat wave. Environ Res 109:614–619

    Article  CAS  Google Scholar 

  • Pascal M, Wagner V, Le Tertre A, Laaidi K, Honore C, Benichou F, Beaudeau P (2013) Definition of temperature thresholds: the example of the French heat wave warning system. Int J Biometeor 57:21–29

    Article  Google Scholar 

  • Petkova E, Gasparrini A, Kinney PL (2014) Heat and mortality in New York since the beginning of the twentieth century. Epidemiology 25(4):554–560. doi:10.1097/EDE.0000000000000123

    Article  Google Scholar 

  • Picón-Feliciano, A.J., Vásquez, R., Gonzalez, J., Luvall, J., Rickman, D. (2009). Use of remote sensing observations to study the urban climate on tropical coastal cities. Revista Umbral - Sección Artículos N.1. 218–232 Teoría de Gaia

  • Portier CJ, Thigpen TK, Carter SR, Dilworth CH, Grambsch AE, et al. 2013. A human health perspective on climate change: a report outlining the research needs on the human health effects of climate change. Research Triangle Park, NC, USA.

  • Rainham DGC, Smoyer-Tomic KE (2003) The role of air pollution in the relationship between a heat stress index and human mortality in Toronto. Environ Res 93:9–19. doi:10.1016/S0013-9351(03)00060-4

    Article  CAS  Google Scholar 

  • Reid, C.E., O’Neill, M.S., Gronlund, C.J., Brines, S.J., Brown, D.G., Diez-Roux, A. V. 2009. Mapping Community Determinants of Heat Vulnerability. Volume 117 | number 11 | Environmental Health Perspectives.

  • Richard L, Kosatsky T, Renouf A (2011) Correlates of hot day air-conditioning use among middle-aged and older adults with chronic heart and lung diseases: the role of health beliefs and cues to action. Health Educ Res 2011(26):77–88

    Article  Google Scholar 

  • Rinner C, Hussain M (2011) Toronto’s urban heat island—exploring the relationship between land use and surface temperature. Remote Sens 2011(3):1251–1265. doi:10.3390/rs3061251

    Article  Google Scholar 

  • Shamir E, Georgakakos PK (2014) MODIS land surface temperature as an index of surface air temperature for operational snowpack estimation. Remote Sens Environ 152:83–98 doi:10.1016/j.rse.2014.06.001

  • Sheridan S (2007) A survey of public perception and response to heat warnings across four North American cities: an evaluation of municipal effectiveness. Int. J. Biometeor. 52(1):3–15

    Article  Google Scholar 

  • Sheridan, S. Dixon, G. 2016. Spatiotemporal trends in human vulnerability and adaptation to heat across the United States, Anthropocene. doi: 10.1016/j.ancene.2016.10.001

  • Sheridan SC, Kalkstein LS (2004) Progress in heat watch-warning system technology. Bull Am Meteorol Soc 85(12):1931

    Article  Google Scholar 

  • Singh NP, Byjesh K, Bantilan C (2014) Chapter 6. Vulnerability to climate change in semi-arid tropics of India: scouting for holistic approach. In: Behnassi, M., Syomiti Muteng’e, M., Gopichandran, R., Shelat, K.N. 2014. Vulnerability of Agriculture, Water and Fisheries to Climate Change. Towards Sustainable Adaptation Strategies. Springer Sciences. ISBN 978-94-017-8962-2 (eBook)

  • Stone, B., Hess, J., Frumkin, H. 2010. Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities? Environmental Health Perspectives, volume 118. Number 10

  • Stone B Jr, Vargo J, Liu P, Habeeb D, DeLucia A et al (2014) Avoided heat-related mortality through climate adaptation strategies in three US cities. PLoS One 9(6):e100852. doi:10.1371/journal.pone.0100852

    Article  CAS  Google Scholar 

  • Toloo GS, FitzGerald G, Aitken P, Verrall K, Tong S (2013) Are heat warning systems effective? Environ Health 12(1):1

    Article  Google Scholar 

  • Tomlinson CJ, Chapman L, Thornes JE, Baker CJ (2011) Including the urban heat island in spatial heat health risk assessment strategies: a case study for Birmingham. UK Int J Health Geogr 10:42. doi:10.1186/1476-072X-10-42

    Article  Google Scholar 

  • Uejio CK, Wilhelmi OV, Golden JS, Mills DM, Gulino SP, Samenow JP (2011) Intra-urban societal vulnerability to extreme heat: the role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health & Place 17(2):498–507

    Article  Google Scholar 

  • United Nations Development Program. 2014. Human Development Index. Human Development Report 2014: Sustaining Human Progress Reducing Vulnerabilities and Building Resilience. Technical Notes. pp. 10.

  • US Census Bureau. 1994a. Geographic Areas Reference Manual (GARM). Chapter 7: Puerto Rico and the Outlying Areas. 42 pp. available https://www.census.gov/geo/reference/garm.html

  • US Census Bureau. 1994b. Geographic Areas Reference Manual (GARM). Chapter 10: Census Tracts and Block Numbering Areas. 17 pp. available https://www.census.gov/geo/reference/garm.html

  • van der Hoeven F, Wandl A (2015) Amsterwarm: mapping the landuse, health and energy-efficiency implications of the Amsterdam urban heat island. Build Serv Eng Res Technol 36(1):67–88

    Article  Google Scholar 

  • Velazquez-Lozada A, Gonzalez J, Winter A. 2006. Urban heat island ´ effect analysis for San Juan, Puerto Rico. Atmospheric Environment 40: 1731–1741.

  • Wang Y, Bakker F, de Groot F, Wörtche H (2014) Effect of ecosystem services provided by urban green infrastructure on indoor environment: a literature review. Build Environ 77(2014):88–e100

    Article  Google Scholar 

  • Wang S, Fang L, Zhang X, Wang W (2015) Retrieval of aerosol properties for fine/coarse mode aerosol mixtures over Beijing from PARASOL measurements. Remote Sens 7:9311–9324. doi:10.3390/rs70709311

    Article  Google Scholar 

  • Wigbels LD (2011) Using air observation data to improve health in the United States: accomplishments and future challenges. Report to the Center for Strategic and International Studies, Technology and Public Policy Program. ISBN 978-0-89206-668-1. 1800 K Street, N.W., Washington D.C. 20006. 34pp

  • Wolf T, McGregor G (2013) The development of a heat wave vulnerability index for London, UK. Weather and Climate Extremes 1(2013):59–68

    Article  Google Scholar 

  • Wolf J, Adger WN, Lorenzoni I, Abrahamson V, Raine R (2009) Social capital, individual responses to heat waves and climate change adaptation: an empirical study of two UK cities. Glob Environ Chang 20:44–52. doi:10.1016/j.gloenvcha. 2009.09.004

    Article  Google Scholar 

  • World Meteorological Organization and World Health Organization. 2015. Heatwaves and health: guidance on warning-system development. ISBN 978–92–63-11142-5

  • Xu Z, Liu Y, Ma Z, Li S, Hu W, Tong S (2015) Impact of temperature on childhood pneumonia estimated from satellite remote sensing. Environ Res 132(2014):334–341

    Google Scholar 

  • Yang B, Meng F, Ke X, Ma C (2015) The impact analysis of water body landscape pattern on urban heat island: a case study of Wuhan City. Hindawi Publishing Corporation Advances in Meteorology 2015(2):1-7 doi:10.1155/2015/416728

  • Yardley J, Sigal RJ, Kenny GP (2011) Heat health planning: the importance of social and community factors. Glob Environ Chang 21:670–679. doi:10.1016/j.gloenvcha.2010.11.010

    Article  Google Scholar 

  • Young, B.E., Byers, E., Hammerson, G., Frances, A., Oliver, L., Treher, A. 2015. Guidelines for using the NatureServe climate change vulnerability index. Copyright © NatureServe 2015, Arlington, VA

  • Zhu Q, Liu T, Lin H, Xiao J, Luo Y, Zeng W, Zeng S, Wei Y, Chu C, Baum S, Du Y, Ma W (2014) The spatial distribution of health vulnerability to heat waves in Guangdong Province, China. Global health action. doi:10.3402/gha.v7.25051

Download references

Acknowledgements

This study was supported by the EPA STAR grant no. 83519 and National Science Foundation Partnerships for International Research (PIRE) grant no. 1243510. We thank the Corporation for the Conservation of the San Juan Bay Estuary, especially Javier Laureano (former Executive Director) and Jorge Bauzá (Scientific Director) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Méndez-Lázaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez-Lázaro, P., Muller-Karger, F.E., Otis, D. et al. A heat vulnerability index to improve urban public health management in San Juan, Puerto Rico. Int J Biometeorol 62, 709–722 (2018). https://doi.org/10.1007/s00484-017-1319-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-017-1319-z

Keywords

Navigation