International Journal of Biometeorology

, Volume 62, Issue 5, pp 709–722 | Cite as

A heat vulnerability index to improve urban public health management in San Juan, Puerto Rico

  • Pablo Méndez-Lázaro
  • Frank E. Muller-Karger
  • Daniel Otis
  • Matthew J. McCarthy
  • Ernesto Rodríguez
Special Issue: Latin America/Caribbean

Abstract

Increased frequency and length of high heat episodes are leading to more cardiovascular issues and asthmatic responses among the population of San Juan, the capital of the island of Puerto Rico, USA. An urban heat island effect, which leads to foci of higher temperatures in some urban areas, can raise heat-related mortality. The objective of this research is to map the risk of high temperature in particular locations by creating heat maps of the city of San Juan. The heat vulnerability index (HVI) maps were developed using images collected by satellite-based remote sensing combined with census data. Land surface temperature was assessed using images from the Thermal Infrared Sensor flown on Landsat 8. Social determinants (e.g., age, unemployment, education and social isolation, and health insurance coverage) were analyzed by census tract. The data were examined in the context of land cover maps generated using products from the Puerto Rico Terrestrial Gap Analysis Project (USDA Forest Service). All variables were set in order to transform the indicators expressed in different units into indices between 0 and 1, and the HVI was calculated as sum of score. The tract with highest index was considered to be the most vulnerable and the lowest to be the least vulnerable. Five vulnerability classes were mapped (very high, high, moderate, low, and very low). The hottest and the most vulnerable tracts corresponded to highly built areas, including the Luis Munoz International Airport, seaports, parking lots, and high-density residential areas. Several variables contributed to increased vulnerability, including higher rates of the population living alone, disabilities, advanced age, and lack of health insurance coverage. Coolest areas corresponded to vegetated landscapes and urban water bodies. The urban HVI map will be useful to health officers, emergency preparedness personnel, the National Weather Service, and San Juan residents, as it helps to prepare for and to mitigate the potential effects of heat-related illnesses.

Keywords

Urban heat island San Juan, Puerto Rico Climate change Heat vulnerability index Landsat 8-Thermal Infrared Sensor 

Notes

Acknowledgements

This study was supported by the EPA STAR grant no. 83519 and National Science Foundation Partnerships for International Research (PIRE) grant no. 1243510. We thank the Corporation for the Conservation of the San Juan Bay Estuary, especially Javier Laureano (former Executive Director) and Jorge Bauzá (Scientific Director) for their support.

References

  1. Abel JR, Dietz R (2014) The causes and consequences of Puerto Rico’s declining population. Federal Reserve Bank of New York Current issues in Economics and Finance 20:1–8Google Scholar
  2. Abrahamson V, Wolf J, Lorenzoni I, Fenn B, Kovats S, Wilkinson P, Adger WN, Raine R (2008) Perceptions of heatwave risks to health: interview-based study of older people in London and Norwich. UK J Public Health 31:119–126 29CrossRefGoogle Scholar
  3. ACS, 2013. American Community Survey and Puerto Rico Community Survey 2013 Subject Definitions. https://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html
  4. Bao J, Li X, Yu C (2015) The construction and validation of the heat vulnerability index, a review. Int. J. Environ. Res. Public Health 2015(12):7220–7234. doi: 10.3390/ijerph120707220 Google Scholar
  5. Barsi, J.A., J.L. Barker, and J. R. Schott (2003). An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. IGARSS03, 21–25, Centre de Congres Pierre Baudis, Toulouse, France.Google Scholar
  6. Barsi, J.A., J.R. Schott, F.D. Palluconi, and S. J. Hook 2005. Validation of a web-based atmospheric correction tool for single thermal band instruments. Earth Observing Systems X, Proc. SPIE, San Diego, CA. Vol. 5882Google Scholar
  7. Basu R, Malig B (2011) High ambient temperature and mortality in California: exploring the roles of age, disease, and mortality displacement. Environ Res 111(2011):1286–1292CrossRefGoogle Scholar
  8. Blake, R., A. Grimm, T. Ichinose, R. Horton, S. N. Gaffi, S. Jiong, D. Bader, L. D. Cecil, 2011. Urban climate: processes, trends, and projections. Climate Change and Cities: First Assessment Report of the Urban Climate Change Research Network, C. Rosenzweig, W. D. Solecki, S. A. Hammer, S. Mehrotra, Eds., Cambridge University Press, Cambridge, UK, 43–81.Google Scholar
  9. Chang Cao, Xuhui Lee, Shoudong Liu, Natalie Schultz, Wei Xiao, Mi Zhang & Lei Zhao. 2016. Urban heat islands in China enhanced by haze pollution. NATURE COMMUNICATIONS | doi: 10.1038/ncomms12509
  10. Chan EYY, Goggins WB, Kim JJ, Griffiths SM (2012) A study of intracity variation of temperature-related mortality and socioeconomic status among the Chinese population in Hong Kong. J Epidemiol Community Health 66(4):322–327CrossRefGoogle Scholar
  11. Chuang, W.C., Gober, P. 2015. Predicting hospitalization for heat-related illness at the census-tract level: accuracy of a generic heat vulnerability index in Phoenix, Arizona (USA) Volume 123 | number 6 Environmental Health Perspectives doi: 10.1289/ehp.1307868
  12. Chung B, Guldmann JM (2014) Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landsc Urban Plan 125(2014):76–88CrossRefGoogle Scholar
  13. Coll C., J. M. Galve, J.M. Sánchez, and V. Caselles (2010)_. Validation of Landsat-7/ETM+ thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Trans. Geosci. Remote Sens., vol. 48, no. 1, pp. 547–555.Google Scholar
  14. Colón, J. 2015. Puerto Rico’s future at stake. Sciences. Editorial 11 SEPTEMBER 2015 • VOL 349 ISSUE 6253 www.sciencemag.org on September 10, 2015
  15. De La Rocque S, Michel V, Plazanet D, Pin R (2004) 2004. Remote sensing and epidemiology: examples of applications for two vector-borne diseases. Comparative immunology. Microbiology & Infectious Diseases 27:331–341Google Scholar
  16. Dugord PA, Lauf S, Schuster C, Kleinschmit B (2014) Land use patterns, temperature distribution, and potential heat stress risk—the case study. Berlin, Germany. Comput Environ Urban Syst 48:86–98CrossRefGoogle Scholar
  17. Ebi KL, Teisberg TJ, Kalkstein LS, Robinson L, Weiher RF (2004) Heat watch/ warning systems save lives: estimated costs and benefits for Philadelphia 1995–98. Bull Am Meteorol Soc 85:1067–1073CrossRefGoogle Scholar
  18. Elías-Boneta A, Toro MJ, Garcia O, Torres R, Palacios AC (2015) High prevalence of overweight and obesity among a representative sample of Puerto Rican children. BMC Public Health 15:219. doi: 10.1186/s12889-015-1549-0 CrossRefGoogle Scholar
  19. Elías-Boneta A, Toro MJ, García O, Torres R, Palacios C (2015) High prevalence of overweight and obesity among a representative sample of Puerto Rican children. BMC Public Health 15:219 doi: 10.1186/s12889-015-1549-0
  20. EPA. 2008. Reducing Urban Heat Islands: Compendium of Strategies. Chapter 1. Urban Heat Island Basics. pp. 22. http://www2.epa.gov/heat-islands/heat-island-compendium
  21. Filleul L, Cassadou S, Médina S, Fabres P, Lefranc A, Eilstein D et al (2006) The relation between temperature, ozone, and mortality in nine French cities during the heat wave of 2003. Environ Health Perspect 114:344–347. doi: 10.1289/ehp.8328 CrossRefGoogle Scholar
  22. Fischer PH, Brunekreef B, Lebret E (2003) Air pollution related deaths during the 2003 heat wave in the Netherlands. Atmos Environ 38:1083–1085. doi: 10.1016/j.atmosenv. 2003.11.010 CrossRefGoogle Scholar
  23. Gould WA, Alarcón C, Fevold B, Jiménez ME, Martinuzzi S, Potts G, Quiñones M, Solórzano M, Ventosa E (2008) The Puerto Rico gap analysis project. Volume 1: land cover, vertebrate species distributions, and land stewardship. Gen. Tech. Rep. IITF-GTR-39. Río Piedras, PR: U.S. Department of Agriculture, Forest Service, International Institute of Tropical Forestry, p 165CrossRefGoogle Scholar
  24. Habeeb D, Vargo J, Stone B Jr (2015) Rising heat wave trends in large US cities. Nat Hazards 76:1651–1665. doi: 10.1007/s11069-014-1563-z CrossRefGoogle Scholar
  25. Hayhoe, K. 2013. Quantifying key drivers of climate variability and change for Puerto Rico and the Caribbean. Agreement Number G10AC00582. Date of Report: April 28, 2013. Available at: http://caribbeanlcc.org/puerto-ricos-first-downscaled-climate-projections-data-now-available
  26. Ho HC, Knudby A, Sirovyak P, Xu Y, Hodul M, Henderson SB (2014) Mapping maximum urban air temperature on hot summer days. Remote Sens Environ 154:38–45CrossRefGoogle Scholar
  27. Ho, H. C., Knudby, A., Walker, B. B., & Henderson, S. B. 2016. Delineation of spatial variability in the temperature-mortality relationship on extremely hot days in Greater Vancouver, Canada. Environ Health PerspectiveGoogle Scholar
  28. IPCC, 2007: Climate Change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson, Eds., Cambridge University Press, Cambridge, UK, pp. 976.Google Scholar
  29. Johnson DP, Stanforth A, Lulla V, Luber G (2011) Developing an applied extreme heat vulnerability index utilizing socioeconomic and environmental data. Appl Geogr 35(2012):23–e31Google Scholar
  30. Kalkstein L, Sheridan S, Kim KR, Lee DG, Choi YJ (2011) The implementation of a national network of heat/health warning systems in the Republic of Korea. Epidemiology 22:S179CrossRefGoogle Scholar
  31. Kalkstein AJ, Sheridan SC (2007) The social impacts of the heat-health watch/warning system in phoenix, Arizona: assessing the perceived risk and response of the public. Int J Biometeorol 52:43–55 27CrossRefGoogle Scholar
  32. Kardinal Jusuf S, Wong NH, Hagen E, Anggoro R, Hong Y (2007) The influence of land use on the urban heat island in Singapore. Habitat International 31(2007):232–242CrossRefGoogle Scholar
  33. Kim S, Ryu Y (2015) Describing the spatial patterns of heat vulnerability from urban design perspectives. International Journal of Sustainable Development & World Ecology 22(3):189–200CrossRefGoogle Scholar
  34. Kumar D, Shekhar S (2015) Statistical analysis of land surface temperature–vegetation indexes relationship through thermal remote sensing. Ecotoxicol Environ Saf 121(2015):39–44CrossRefGoogle Scholar
  35. Landsat 8 (L8) Data Users Handbook 2015. United States Geologic Survey Document LSDS-1574, Version 1.0. Sioux Falls, SD. Retrieved on 9/15/2015 from http://landsat.gov/documents/Landsat8DataUsersHandbook.pdf
  36. Liu, Y., Hu, J., Snell-Feikema, I., VanBemmel, M.S., Lamsal, A., Wimberly, M.C. 2015. Software to facilitate remote sensing data access for disease early warning systems. Environmental Modelling & Software xxx (2015) 1e11. Article in press.Google Scholar
  37. Loughnan, M., Tapper, N., Phan, T. 2014. Identifying vulnerable populations in subtropical Brisbane, Australia: a guide for heatwave preparedness and health promotion. Hindawi Publishing Corporation ISRN Epidemiology Volume 2014, pp. 12 Article ID 821759, doi:  10.1155/2014/821759
  38. Lowe D, Ebi KL, Forsberg B (2011) Heatwave early warning systems and adaptation advice to reduce human health consequences of heatwaves. Int J Environ Res Public Health 8:4623–4648CrossRefGoogle Scholar
  39. Maimaitiyiming M, Ghula A, Tiyip T, Pla F, Latorre-Carmona P, Halik Ü, Sawut M, Caetano M (2014) Effects of green space spatial pattern on land surface temperature: implications for sustainable urban planning and climate change adaptation. ISPRS J Photogramm Remote Sens 89(2014):59–66CrossRefGoogle Scholar
  40. Manteghi G, bin limit H, Remaz D (2015) Water bodies an urban microclimate: a review. Mod Appl Sci 9(6):2015. doi: 10.5539/mas.v9n6p1
  41. Méndez-Lázaro P, Muller-Karger FE, Otis D, McCarthy M, Peña-Orellana M (2014) Assessing climate change effects on dengue incidence in San Juan, Puerto Rico. Int J Environ Res Public Health 11(9):9409-9428 Google Scholar
  42. Méndez-Lázaro P, Martínez-Sánchez O, Méndez-Tejeda R, Rodríguez E, Morales E, Schmitt-Cortijo N (2015) Extreme heat events in San Juan Puerto Rico: trends and variability of unusual hot weather and its possible effects on ecology and society. J Climatol Weather Forecasting 3:135. doi: 10.4172/2332-2594.1000135 Google Scholar
  43. Méndez-Lázaro PA, Pérez-Cardona CM, Rodríguez E, Martinez O, Taboas M, Bocanegra A, Mendez-Tejeda R (2016) Climate change, heat, and mortality in the tropical urban area of San Juan, Puerto Rico. Int J Biometeorol 2016. doi: 10.1007/s00484-016-1291-z
  44. Mohan M, Kandya A (2015) Impact of urbanization and land-use/land-cover change on diurnal temperature range. A case study of tropical urban airshed of India using remote sensing data Science of the Total Environment 506–507(2015):453–465Google Scholar
  45. Morabito M, Crisci A, Gioli B, Gualtieri G, Toscano P, Di Stefano V et al (2015) Urban-hazard risk analysis: mapping of heat-related risks in the elderly in major Italian cities. PLoS One 10(5):e0127277. doi: 10.1371/journal.pone.0127277 CrossRefGoogle Scholar
  46. Norton BA, Coutts AM, Livesley SJ, Harris RJ, Hunter AM, Williams NS (2015) Planning for cooler cities: a framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landsc Urban Plan 134:127–138CrossRefGoogle Scholar
  47. Ostro BD, Roth LA, Green RS, Basu R (2009) Estimating the mortality effect of the July 2006 California heat wave. Environ Res 109:614–619CrossRefGoogle Scholar
  48. Pascal M, Wagner V, Le Tertre A, Laaidi K, Honore C, Benichou F, Beaudeau P (2013) Definition of temperature thresholds: the example of the French heat wave warning system. Int J Biometeor 57:21–29CrossRefGoogle Scholar
  49. Petkova E, Gasparrini A, Kinney PL (2014) Heat and mortality in New York since the beginning of the twentieth century. Epidemiology 25(4):554–560. doi: 10.1097/EDE.0000000000000123 CrossRefGoogle Scholar
  50. Picón-Feliciano, A.J., Vásquez, R., Gonzalez, J., Luvall, J., Rickman, D. (2009). Use of remote sensing observations to study the urban climate on tropical coastal cities. Revista Umbral - Sección Artículos N.1. 218–232 Teoría de GaiaGoogle Scholar
  51. Portier CJ, Thigpen TK, Carter SR, Dilworth CH, Grambsch AE, et al. 2013. A human health perspective on climate change: a report outlining the research needs on the human health effects of climate change. Research Triangle Park, NC, USA.Google Scholar
  52. Rainham DGC, Smoyer-Tomic KE (2003) The role of air pollution in the relationship between a heat stress index and human mortality in Toronto. Environ Res 93:9–19. doi: 10.1016/S0013-9351(03)00060-4 CrossRefGoogle Scholar
  53. Reid, C.E., O’Neill, M.S., Gronlund, C.J., Brines, S.J., Brown, D.G., Diez-Roux, A. V. 2009. Mapping Community Determinants of Heat Vulnerability. Volume 117 | number 11 | Environmental Health Perspectives.Google Scholar
  54. Richard L, Kosatsky T, Renouf A (2011) Correlates of hot day air-conditioning use among middle-aged and older adults with chronic heart and lung diseases: the role of health beliefs and cues to action. Health Educ Res 2011(26):77–88CrossRefGoogle Scholar
  55. Rinner C, Hussain M (2011) Toronto’s urban heat island—exploring the relationship between land use and surface temperature. Remote Sens 2011(3):1251–1265. doi: 10.3390/rs3061251 CrossRefGoogle Scholar
  56. Shamir E, Georgakakos PK (2014) MODIS land surface temperature as an index of surface air temperature for operational snowpack estimation. Remote Sens Environ 152:83–98 doi: 10.1016/j.rse.2014.06.001
  57. Sheridan S (2007) A survey of public perception and response to heat warnings across four North American cities: an evaluation of municipal effectiveness. Int. J. Biometeor. 52(1):3–15CrossRefGoogle Scholar
  58. Sheridan, S. Dixon, G. 2016. Spatiotemporal trends in human vulnerability and adaptation to heat across the United States, Anthropocene. doi:  10.1016/j.ancene.2016.10.001
  59. Sheridan SC, Kalkstein LS (2004) Progress in heat watch-warning system technology. Bull Am Meteorol Soc 85(12):1931CrossRefGoogle Scholar
  60. Singh NP, Byjesh K, Bantilan C (2014) Chapter 6. Vulnerability to climate change in semi-arid tropics of India: scouting for holistic approach. In: Behnassi, M., Syomiti Muteng’e, M., Gopichandran, R., Shelat, K.N. 2014. Vulnerability of Agriculture, Water and Fisheries to Climate Change. Towards Sustainable Adaptation Strategies. Springer Sciences. ISBN 978-94-017-8962-2 (eBook)Google Scholar
  61. Stone, B., Hess, J., Frumkin, H. 2010. Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities? Environmental Health Perspectives, volume 118. Number 10Google Scholar
  62. Stone B Jr, Vargo J, Liu P, Habeeb D, DeLucia A et al (2014) Avoided heat-related mortality through climate adaptation strategies in three US cities. PLoS One 9(6):e100852. doi: 10.1371/journal.pone.0100852 CrossRefGoogle Scholar
  63. Toloo GS, FitzGerald G, Aitken P, Verrall K, Tong S (2013) Are heat warning systems effective? Environ Health 12(1):1CrossRefGoogle Scholar
  64. Tomlinson CJ, Chapman L, Thornes JE, Baker CJ (2011) Including the urban heat island in spatial heat health risk assessment strategies: a case study for Birmingham. UK Int J Health Geogr 10:42. doi: 10.1186/1476-072X-10-42 CrossRefGoogle Scholar
  65. Uejio CK, Wilhelmi OV, Golden JS, Mills DM, Gulino SP, Samenow JP (2011) Intra-urban societal vulnerability to extreme heat: the role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health & Place 17(2):498–507CrossRefGoogle Scholar
  66. United Nations Development Program. 2014. Human Development Index. Human Development Report 2014: Sustaining Human Progress Reducing Vulnerabilities and Building Resilience. Technical Notes. pp. 10.Google Scholar
  67. US Census Bureau. 1994a. Geographic Areas Reference Manual (GARM). Chapter 7: Puerto Rico and the Outlying Areas. 42 pp. available https://www.census.gov/geo/reference/garm.html
  68. US Census Bureau. 1994b. Geographic Areas Reference Manual (GARM). Chapter 10: Census Tracts and Block Numbering Areas. 17 pp. available https://www.census.gov/geo/reference/garm.html
  69. van der Hoeven F, Wandl A (2015) Amsterwarm: mapping the landuse, health and energy-efficiency implications of the Amsterdam urban heat island. Build Serv Eng Res Technol 36(1):67–88CrossRefGoogle Scholar
  70. Velazquez-Lozada A, Gonzalez J, Winter A. 2006. Urban heat island ´ effect analysis for San Juan, Puerto Rico. Atmospheric Environment 40: 1731–1741.Google Scholar
  71. Wang Y, Bakker F, de Groot F, Wörtche H (2014) Effect of ecosystem services provided by urban green infrastructure on indoor environment: a literature review. Build Environ 77(2014):88–e100CrossRefGoogle Scholar
  72. Wang S, Fang L, Zhang X, Wang W (2015) Retrieval of aerosol properties for fine/coarse mode aerosol mixtures over Beijing from PARASOL measurements. Remote Sens 7:9311–9324. doi: 10.3390/rs70709311 CrossRefGoogle Scholar
  73. Wigbels LD (2011) Using air observation data to improve health in the United States: accomplishments and future challenges. Report to the Center for Strategic and International Studies, Technology and Public Policy Program. ISBN 978-0-89206-668-1. 1800 K Street, N.W., Washington D.C. 20006. 34ppGoogle Scholar
  74. Wolf T, McGregor G (2013) The development of a heat wave vulnerability index for London, UK. Weather and Climate Extremes 1(2013):59–68CrossRefGoogle Scholar
  75. Wolf J, Adger WN, Lorenzoni I, Abrahamson V, Raine R (2009) Social capital, individual responses to heat waves and climate change adaptation: an empirical study of two UK cities. Glob Environ Chang 20:44–52. doi: 10.1016/j.gloenvcha. 2009.09.004 CrossRefGoogle Scholar
  76. World Meteorological Organization and World Health Organization. 2015. Heatwaves and health: guidance on warning-system development. ISBN 978–92–63-11142-5Google Scholar
  77. Xu Z, Liu Y, Ma Z, Li S, Hu W, Tong S (2015) Impact of temperature on childhood pneumonia estimated from satellite remote sensing. Environ Res 132(2014):334–341Google Scholar
  78. Yang B, Meng F, Ke X, Ma C (2015) The impact analysis of water body landscape pattern on urban heat island: a case study of Wuhan City. Hindawi Publishing Corporation Advances in Meteorology 2015(2):1-7 doi: 10.1155/2015/416728
  79. Yardley J, Sigal RJ, Kenny GP (2011) Heat health planning: the importance of social and community factors. Glob Environ Chang 21:670–679. doi: 10.1016/j.gloenvcha.2010.11.010 CrossRefGoogle Scholar
  80. Young, B.E., Byers, E., Hammerson, G., Frances, A., Oliver, L., Treher, A. 2015. Guidelines for using the NatureServe climate change vulnerability index. Copyright © NatureServe 2015, Arlington, VAGoogle Scholar
  81. Zhu Q, Liu T, Lin H, Xiao J, Luo Y, Zeng W, Zeng S, Wei Y, Chu C, Baum S, Du Y, Ma W (2014) The spatial distribution of health vulnerability to heat waves in Guangdong Province, China. Global health action. doi: 10.3402/gha.v7.25051

Copyright information

© ISB 2017

Authors and Affiliations

  • Pablo Méndez-Lázaro
    • 1
  • Frank E. Muller-Karger
    • 2
  • Daniel Otis
    • 2
  • Matthew J. McCarthy
    • 2
  • Ernesto Rodríguez
    • 3
  1. 1.Environmental Health Department, Graduate School of Public HealthUniversity of Puerto, Rico, Medical Sciences CampusSan JuanPuerto Rico
  2. 2.Institute for Marine Remote Sensing, College of Marine ScienceUniversity of South FloridaSt. PetersburgUSA
  3. 3.National Weather Service, San Juan, PR Weather Forecast OfficeCarolinaPuerto Rico

Personalised recommendations