Skip to main content
Log in

Multi-sector thermo-physiological head simulator for headgear research

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

A novel thermo-physiological human head simulator for headgear testing was developed by coupling a thermal head manikin with a thermo-physiological model. As the heat flux at head-site is directly measured by the head manikin, this method provides a realistic quantification of the heat transfer phenomena occurring in the headgear, such as moisture absorption-desorption cycles, condensation, or moisture migration across clothing layers. Before coupling, the opportunities of the head manikin for representing the human physiology were evaluated separately. The evaluation revealed reduced precision in forehead and face temperature predictions under extreme heterogeneous temperature distributions and no initial limitation for simulating temperature changes observed in the human physiology. The thermo-physiological model predicted higher sweat rates when applied for coupled than for pure virtual simulations. After coupling, the thermo-physiological human head simulator was validated using eight human experiments. It precisely predicted core, mean skin, and forehead temperatures with average rmsd values within the average experimental standard deviation (rmsd of 0.20 ± 0.15, 0.83 ± 0.34, and 1.04 ± 0.54 °C, respectively). However, in case of forehead, precision was lower for the exposures including activity than for the sedentary exposures. The representation of the human sweat evaporation could be affected by a reduced evaporation efficiency and the manikin sweat dynamics. The industry will benefit from this thermo-physiological human head simulator leading to the development of helmet designs with enhanced thermal comfort and, therefore, with higher acceptance by users.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • ASTM F2370-10, 2010 (2010) Standard test method for measuring the evaporative resistance of clothing using a sweating manikin. ASTM International, West Conshohocken

    Google Scholar 

  • Buono MJ, Ulrich RL (1998) Comparison of mean skin temperature using “covered” versus “uncovered” contact thermistors. Physiol Meas 19:297–300

    Article  CAS  Google Scholar 

  • Burton AC (1944) An analysis of the physiological effects of clothing in hot environments. National Research Council, Canada

  • Casa DJ, Becker SM, Ganio MS, Brown CM, Yeargin SW, Roti MW, Siegler J, Blowers JA, Glaviano NR, Huggins RA, Armstrong LE, Maresh CM (2007) Validity of devices that assess body temperature during outdoor exercise in the heat. J Athl Train 42:333–342

    Google Scholar 

  • Curran AR, Peck SD, Hepokoski MA, Burke RA (2014) Physiological model control of a sweating thermal manikin. In: Ambience’14&10i3m, Tampere, Finland, 7-9 Sept 2014, pp. 7–9

  • Easton C, Fudge BW, Pitsiladis YP (2007) Rectal, telemetry pill and tympanic membrane thermometry during exercise heat stress. J Therm Biol 32:78–86. doi:10.1016/j.jtherbio.2006.10.004

    Article  Google Scholar 

  • Fan J, Cheng X-J (2005a) Heat and moisture transfer with sorption and phase change through clothing assemblies: part I: experimental investigation. Text Res J 75:900–105. doi:10.1177/004051750507500301

    Google Scholar 

  • Fan J, Cheng X-J (2005b) Heat and moisture transfer with sorption and phase change through clothing assemblies: part II: theoretical modeling, simulation, and comparison with experimental results. Text Res J 75:187–196. doi:10.1177/004051750507500301

    Article  CAS  Google Scholar 

  • Farrington RB, Rugh JP, Bharathan D, Burke R (2004) Use of a thermal manikin to evaluate human thermoregulatory responses in transient, non-uniform, thermal environments. In: Society of Automotive Engineers Technical Paper. pp. 2004–01–2345. SAE International. doi:10.4271/2004-01-2345

  • Farrington RB, Rugh JP, Bharathan D, Paul H, Bue G, Trevino L (2005). Using a sweating manikin, controlled by a human physiological model, to evaluate liquid cooling garments, in: Society of Automotive Engineers Technical Paper. doi:10.4271/2005-01-2971

  • Fiala D, Havenith G (2015) Modelling human heat transfer and temperature regulation, in: Springer-Verlag Berlin Heidelberg (Ed.), Studies in Mechanobiology, Tissue Engineering and Biomaterials. pp. 1–38. doi:10.1007/8415

  • Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87:1957–1972

    CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159. doi:10.1007/s004840100099

    Article  CAS  Google Scholar 

  • Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56:429–441. doi:10.1007/s00484-011-0424-7

    Article  Google Scholar 

  • Haslam RA, Parsons KC (1994) Using computer-based models for predicting human thermal responses to hot and cold environments. Ergonomics 37:399–416. doi:10.1080/00140139408963659

    Article  CAS  Google Scholar 

  • Havenith G, Richards MG, Wang X, Bröde P, Candas V, Den Hartog E, Holmér I, Kuklane K, Meinander H, Nocker W (2008) Apparent latent heat of evaporation from clothing: attenuation and heat pipe effects. J Appl Physiol 104:142–149. doi:10.1152/japplphysiol.00612.2007

    Article  Google Scholar 

  • Havenith G, Bröde P, den Hartog E, Kuklane K, Holmer I, Rossi RM, Richards M, Farnworth B, Wang X (2013) Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin. J Appl Physiol 114:778–785. doi:10.1152/japplphysiol.01271.2012

    Article  Google Scholar 

  • ISO15831 (2004) Clothing—physiological effects—measurement of thermal insulation by means of a thermal manikin. International Organisation for Standardisation, Geneva (Switzerland)

    Google Scholar 

  • ISO9920 (2007) Ergonomics of the thermal environment—estimation of thermal insulation and water vapour resistance of a clothing ensemble. International Organisation for Standardisation, Geneva (Switzerland)

    Google Scholar 

  • Jones BW (2002) Capabilities and limitations of thermal models for use in thermal comfort standards. Energy Build 34:653–659. doi:10.1016/S0378-7788(02)00016-6

    Article  Google Scholar 

  • Kobayashi Y, Tanabe S (2013) Development of JOS-2 human thermoregulation model with detailed vascular system. Build Environ 66:1–10. doi:10.1016/j.buildenv.2013.04.013

    Article  Google Scholar 

  • Li Y, Li F, Liu Y, Luo Z (2004) An integrated model for simulating interactive thermal processes in human-clothing system. J Therm Biol 29:567–575. doi:10.1016/j.jtherbio.2004.08.071

    Article  Google Scholar 

  • Lotens WA (1993) Heat transfer from human wearing clothing. Techincal University Delft, Delft

    Google Scholar 

  • Lotens WA, Havenith G (1994) Effects of moisture absorption in clothing on the human heat balance. Ergonomics 38:1092–1113

    Article  Google Scholar 

  • Lotens WA, van de Linde FJG, Havenith G (1995) Effect of condensation in clothing on heat transfer. Ergonomics 38:1114–1131

    Article  CAS  Google Scholar 

  • Mäkinen T, Gavhed D, Holmér I, Rintamäki H (2000) Thermal responses to cold wind of thermoneutral and cooled subjects. Eur J Appl Physiol 81:397–402. doi:10.1007/s004210050060

    Article  Google Scholar 

  • Martínez N, Psikuta A, Rossi RM, Corberán JM, Annaheim S, (2016) Global and local heat transfer analysis for bicycle helmets using thermal head manikins. Int J Ind Ergon. 53:157–166. doi:10.1016/j.ergon.2015.11.012

  • Martínez N, Psikuta A, Annaheim S, Corberán JM, Rossi RM (2015) Validation of a physiological model for controlling a thermal head simulator. 16th International Conference on Environmental Ergonomics, Portsmouth

    Google Scholar 

  • Munir A, Takada S, Matsushita T (2009) Re-evaluation of Stolwijk’s 25-node human thermal model under thermal-transient conditions: prediction of skin temperature in low-activity conditions. Build Environ 44:1777–1787. doi:10.1016/j.buildenv.2008.11.016

    Article  Google Scholar 

  • Niedermann R, Wyss E, Annaheim S, Psikuta A, Davey S, Rossi RM (2014) Prediction of human core body temperature using non-invasive measurement methods. Int J Biometeorol 58:7–15. doi:10.1007/s00484-013-0687-2

    Article  Google Scholar 

  • Priego Quesada JI, Martínez Guillamón N, Cibrián Ortiz De Anda RM, Psikuta A, Annaheim S, Rossi RM, Corberán Salvador JM, Pérez Soriano P, Salvador Palmer R (2015) Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling. Infrared Phys Technol 72:68–76. doi:10.1016/j.infrared.2015.07.008

    Article  Google Scholar 

  • Psikuta A (2009) Development of an “artificial human” for clothing research. De Monfort University, Leicester

    Google Scholar 

  • Psikuta A, Richards M, Fiala D (2008) Single-sector thermophysiological human simulator. Physiol Meas 29:181–192

    Article  Google Scholar 

  • Psikuta A, Fiala D, Laschewski G, Jendritzky G, Richards M, Blazejczyk K, Mekjavič I, Rintamäki H, de Dear R, Havenith G (2012) Validation of the Fiala multi-node thermophysiological model for UTCI application. Int J Biometeorol 56:443–460

    Article  Google Scholar 

  • Psikuta A, Niedermann R, Rossi RM (2013a) Effect of ambient temperature and attachment method on surface temperature measurements. Int J Biometeorol. doi:10.1007/s00484-013-0669-4

    Google Scholar 

  • Psikuta A, Wang L-C, Rossi RM (2013b) Prediction of the physiological response of humans wearing protective clothing using a thermophysiological human simulator. J Occup Environ Hyg 10:222–232. doi:10.1080/15459624.2013.766562

    Article  Google Scholar 

  • Psikuta A, Kuklane K, Bogdan A, Havenith G, Annaheim S, Rossi RM (2016) Opportunities and constraints of presently used thermal manikins for thermophysiological simulation of the human body. Int J Biometeorol 60:435–446. doi:10.1007/s00484-015-1041-7

  • Redortier B, Voelcker T (2010) Implementation of thermo-physiological control on a multi-zone manikin. In: 8th International Meeting for Thermal Manikin and Modeling (8I3M), Victoria, Canada, 22-26 August 2010

  • Redortier B, Voelcker T (2011) A 38-zone thermal manikin with physiological control: validation for simulating thermal response of the body for sports exercise in cold and hot environment, in: 14th International Conference on Environmental Ergonomics. Napflio, Greece

    Google Scholar 

  • Rugh JP, Farrington RB, Bharathan D, Vlahinos A, Burke R, Huizenga C, Zhang H (2004) Predicting human thermal comfort in a transient nonuniform thermal environment. Eur J Appl Physiol 92:721–727

    Article  CAS  Google Scholar 

  • Smith CE (1991) A transient three-dimensional model of the thermal system. MSc thesis, Kansas State University, Kansas

  • Stolwijk JA (1971) A mathematical model of physiological temperature regulation in man. NASA Contractor Report No. CR-1855, National Aeronautics and Space Administration, Washington, DC

  • Tanabe S, Kobayashi K, Nakano J, Ozeki Y (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build 34:637–646

    Article  Google Scholar 

  • Teunissen LPJ, de Haan A, de Koning JJ, Daanen HAM (2012) Telemetry pill versus rectal and esophageal temperature during extreme rates of exercise-induced core temperature change. Physiol Meas 33:915–924. doi:10.1088/0967-3334/33/6/915

    Article  CAS  Google Scholar 

  • Wagner JA, Horvath SM (1985) Influences of age and gender on human thermoregulatory responses to cold exposures. J Appl Physiol 58:180–186

    CAS  Google Scholar 

  • Werner J, Webb P (1993) A six-cylinder model of human thermoregulation for general use on personal computers. Ann Physiol Anthropol 12:123–134. doi:10.2114/ahs1983.12.123

    Article  CAS  Google Scholar 

  • Wissler EH (1985) Mathematical simulation of human thermal behaviour using whole body models. In: Shitzer A, E.R.C. 1198 (eds) Heat transfer in medicine and biology—analysis and applications, vol 13. Plenum, New York, pp 325–373

    Google Scholar 

  • Wissler EH, Havenith G (2009) A simple theoretical model of heat and moisture transport in multi-layer garments in cool ambient air. Eur J Appl Physiol 105:797–808. doi:10.1007/s00421-008-0966-5

    Article  CAS  Google Scholar 

  • Wu H, Fan J (2008) Study of heat and moisture transfer within multi-layer clothing assemblies consisting of different types of battings. Int J Therm Sci 47:641–647. doi:10.1016/j.ijthermalsci.2007.04.008

    Article  Google Scholar 

  • Xu X, Werner J (1997) A dynamic model of the human/clothing/environment-system. Appl Hum Sc 16:61–75

    Article  CAS  Google Scholar 

  • Zhang H (2003) Human thermal sensation and comfort in transient and non-uniform thermal environments. University of California, Berkeley

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the State Secretariat for Education, Research and Innovation (SBFI C11.0137) under the grant COST Action TU1101 project (http://www.bicycle-helmets.eu/) The authors gratefully acknowledge Dr. Matthew Morrissey and Rolf Stämpfli from Empa (St. Gallen, Switzerland) for their valuable contribution to programming of the coupling interface and Barbara Koelblen from Empa (St. Gallen, Switzerland) and Warsaw University of Technology (Warsaw, Poland) for providing the validation data and consultation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes Psikuta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, N., Psikuta, A., Corberán, J.M. et al. Multi-sector thermo-physiological head simulator for headgear research. Int J Biometeorol 61, 273–285 (2017). https://doi.org/10.1007/s00484-016-1209-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1209-9

Keywords

Navigation