Skip to main content
Log in

Evaluating of simulated carbon flux phenology over a cropland ecosystem in a semiarid area of China with SiBcrop

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The cropland ecosystem in semiarid areas is sensitive to climate change. The accurate representation of crop phenology is important for predicting the carbon and water exchange process. The performance of a newly developed phenological model (SiBcrop) for simulations of carbon flux phenology in a semiarid area ecosystem was evaluated. The results showed that the SiBcrop improved the prediction for daily maximum gross primary production (GPP), and the days GPP reached the maximum value were closer to the observation, compared to SiB3. SiBcrop had a better prediction for both monthly total net ecosystem exchange (NEE) in the growing season than in the dormant season in semiarid areas. The day when the cumulative NEE predicted with SiBcrop became positive was closer to the observation. The observed start date of carbon uptake (CUstart) had a larger annual variation than did the end date of carbon uptake (CUend). SiBcrop had a better prediction for CUstart but poor for CUend, compared to SiB3. There was a longer carbon uptake period (CUP) predicted with SiBcrop than the observed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amthor JS (2001) Effects of atmospheric CO2, concentration on wheat yield: review of results from experiments using various approaches to control CO2, concentration. Field Crop Res 73(1):1–34

    Article  Google Scholar 

  • Baker IT, Prihodko L, Denning AS, Goulden M, Miller S, da Rocha HR (2008) Seasonal drought stress in the Amazon: reconciling models and observations. J Geophys Res Biogeosci 113. doi: 10.1029/2007jg000644

  • Baldocchi DD, Wilson KB (2001) Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecol Model 142:155–184

    Article  CAS  Google Scholar 

  • Baldocchi DD, Black TA, Curtis PS, Falge E, Fuente JD, Granier A, Gu L, Knohl A, Pilegaard K, Schmid HP, Valentini R, Wilson K, Wofsy S, Xu L, Yamamoto S (2005) Predicting the onset of net carbon uptake by deciduous forests with soil temperature and climate data: a synthesis of FLUXNET data. Int J Biometeorol 49:377–387. doi:10.1007/s00484-005-0256-4

  • Dingkuhn M, Kouressy M, Vaksmann M, Clerget B, Chantereau J (2008) A model of sorghum photoperiodism using the concept of threshold-lowering during prolonged appetence. Eur J Agron 28:74–89. doi:10.1016/j.eja.2007.05.005

    Article  Google Scholar 

  • Domingo F, Serrano-Ortiz P, Were A, Villagarcía L, García M, Ramírez DA, Kowalski AS, Moro MJ, Rey A, Oyonarte C (2011) Carbon and water exchange in semiarid ecosystems in SE Spain. J Arid Environ 75(12):1271–1281

  • Dragoni D, Schmid HP, Wayson CA, Potter H, Grimmond CSB, Randolph JC (2011) Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south-Central Indiana, USA. Glob Chang Biol 17:886–897. doi:10.1111/j.1365-2486.2010.02281.x

    Article  Google Scholar 

  • Du Q, Liu H (2013) Seven years of carbon dioxide exchange over a degraded grassland and a cropland with maize ecosystems in a semiarid area of China. Agric Ecosyst Environ 173:1–12. doi:10.1016/j.agee.2013.04.009

    Article  Google Scholar 

  • Flanagan LB, Wever LA, Carlson PJ (2002) Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Glob Chang Biol 8:599–615

    Article  Google Scholar 

  • Hay RKM (2008) Harvest index: a review of its use in plant breeding and crop physiology. Ann Appl Biol 126(1):197–216

    Article  Google Scholar 

  • Hofstra G, Hesketh JD (1969) Effects of temperature on the gas exchange of leaves in the light and dark. Planta 85(3):228–237

    Article  CAS  Google Scholar 

  • Hui D, Wan S, Su B, Katul G, Monson R, Luo Y (2004) Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations. Agric For Meteorol 121:93–111

    Article  Google Scholar 

  • Hwang T, Song C, Bolstad PV, Band LE (2011) Downscaling real-time vegetation dynamics by fusing multi-temporal MODIS and Landsat NDVI in topographically complex terrain. Remote Sens Environ 115:2499–2512. doi:10.1016/j.rse.2011.05.010

    Article  Google Scholar 

  • Kato T, Tang Y (2008) Spatial variability and major controlling factors of CO2 sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data. Glob Chang Biol 14:2333–2348. doi:10.1111/j.1365-2486.2008.01646.x

    Article  Google Scholar 

  • Keersmaecker WD, Lhermitte S, Tits L, Honnay O, Ben S, Pol C (2015) A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Glob Ecol Biogeogr 24(5):539–548

  • Lehuger S, Gabrielle B, Cellier P, Loubet B, Roche R, Béziat P, Ceschia E, Wattenbach M (2010) Predicting the net carbon exchanges of crop rotations in Europe with an agro-ecosystem model. Agric Ecosyst Environ 139(3):384–395

  • Li X, Zhu Z, Zeng H, Piao S (2016) Estimation of gross primary production in China (1982–2010) with multiple ecosystem models. Ecol Model 324:33–44

  • Liu J, Tian H, Liu M, Zhuang D, Melillo JM, Zhang Z (2005) China’s changing landscape during the 1990s: large-scale land transformations estimated with satellite data. Geophys Res Lett 32(2):L02405

  • Liu HZ, Feng JW (2012) Seasonal and interannual variations of evapotranspiration and energy exchange over different land surfaces in a semiarid area of China. J Appl Meteorol Climatol 51:1875–1888. doi:10.1175/jamc-d-11-0229.1

    Article  Google Scholar 

  • Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. Funct Ecol 8(3):315–323

    Article  Google Scholar 

  • Jing P, Li D (2015) Impacts of CO2, concentration and climate change on the terrestrial carbon flux using six global climate–carbon coupled models. Ecol Model 304:69–83

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, et al. (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc:1631–1643

  • Lokupitiya E, Denning S, Paustian K, Baker I, Schaefer K, Verma S, Meyers T, Bernacchi CJ, Suyker A, Fischer M (2009) Incorporation of crop phenology in simple biosphere model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands. Biogeosciences 6:969–986

  • Ma S, Churkina G, Trusilova K (2012) Investigating the impact of climate change on crop phenological events in Europe with a phenology model. Int J Biometeorol 56(4):749–763

    Article  Google Scholar 

  • McMaster GS, Wilhelm WW (1998) Is soil temperature better than air temperature for predicting winter wheat phenology? Agron J 90:602–607

    Article  Google Scholar 

  • Michaelis, Menten (1913) Die kinetic der Invertinwirkung. Biochem Z 49:333

    CAS  Google Scholar 

  • Migliavacca M, Reichstein M, Richardson AD, Mahecha MD, Cremonese E, Delpierre N, Galvagno M, Law BE, Wohlfahrt G, Andrew Black T, Carvalhais N, Ceccherini G, Chen J, Gobron N, Koffi E, William Munger J, Perez-Priego O, Robustelli M, Tomelleri E, Cescatti A (2014) Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests. Glob Chang Biol 21(1):363–376

  • Papale D, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006) Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3:571–583

  • Richardson AD, Black TA, Ciais P, Delbart N, Friedl MA, Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luyssaert S, Migliavacca M, Montagnani L, Munger JW, Moors E, Piao ShiLong, Rebmann C, Reichstein M, Saigusa N, Tomelleri E, Vargas R, Varlagin A (2010) Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philos Trans R Soc B Biol Sci 365:3227–3246. doi:10.1098/rstb.2010.0102

  • Richardson AD, Hollinger DY, Dail DB, Lee JT, Munger JW, O’Keefe J (2009) Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiol 29:321–331. doi:10.1093/treephys/tpn040

    Article  CAS  Google Scholar 

  • Seddon AWR, Macias-Fauria M, Long PR, Benz D, Willis KJ (2016) Sensitivity of global terrestrial ecosystems to climate variability. Nature 531(7593):229–232. doi:10.1038/nature16986

  • Sellers PJ, Los SO, Tucker CJ, Justice CO, Dazlich DA, Collatz GJ, Randall DA (1996a) A revised land surface parameterization (SiB2) for atmospheric GCMs .2. The generation of global fields of terrestrial biophysical parameters from satellite data. J Clim 9:706–737. doi:10.1175/1520-0442(1996)009<C0706:arlspf>2.0.co;2

  • Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere model (Sib) for use within general-circulation models. J Atmos Sci 43:505–531. doi:10.1175/1520-0469(1986)043<0505:asbmfu>2.0.co;2

    Article  Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L (1996b) A revised land surface parameterization (SiB2) for atmospheric GCMs .1. Model formulation. J Clim 9:676–705. doi:10.1175/1520-0442(1996)009<0676:arlspf>2.0.co;2

  • Valade A, Vuichard N, Ciais P, Ruget F, Viovy N, Gabrielle B, Huth N, Martiné JF (2014) ORCHIDEE-STICS, a process-based model of sugarcane biomass production: calibration of model parameters governing phenology. GCB Bioenergy 6:606–620

  • Verhoef A, Allen SJ, Lloyd CR (1999) Seasonal variation of surface energy balance over two Sahelian surfaces. Int J Climatol 19:1267–1277. doi:10.1002/(sici)1097-0088(199909)19:11<1267::aid-joc418>3.3.co;2-j

    Article  Google Scholar 

  • Vintrou E, Bégué A, Baron C, Saad A, Lo Seen D, Traoré S (2014) A comparative study on satellite- and model-based crop phenology in West Africa. Remote Sens 6(2):1367–1389

  • White MA, Nemani AR (2003) Canopy duration has little influence on annual carbon storage in the deciduous broad leaf forest. Glob Chang Biol 9:967–972. doi:10.1046/j.1365-2486.2003.00585.x

    Article  Google Scholar 

  • Wu C, Chen JM, Black TA, Price DT, Kurz WA, Desai AR, Gonsamo A, Jassal RS, Gough CM, Bohrer G, Dragoni D, Herbst M, Gielen B, Berninger F, Vesala T, Mammarella I, Pilegaard K, Blanken P (2013) Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Glob Ecol Biogeogr 22(8):994–1006

  • Wu X, Vuichard N, Ciais P, Viovy N, de Noblet-Ducoudré N, Wang X, Magliulo V, Wattenbach M, Vitale L, Di Tommasi P, Moors EJ, Jans W, Elbers J, Ceschia E, Tallec T, Bernhofer C, Grünwald T, Moureaux C, Manise T, Ligne A, Cellier P, Loubet B, Larmanou E, Ripoche D (2016) ORCHIDEE-CROP (v0), a new process-based agro-land surface model: model description and evaluation over Europe. Geosci Model Dev Discuss 8(6):4653–4696

  • Yang F, Zhang H, Dong W, Yuan W (2014) Comparison of phenology models for predicting the onset of growing season over the northern hemisphere. PLoS One 9(10):56–56

    Google Scholar 

  • Yeo A (1999) Predicting the interaction between the effects of salinity and climate change on crop plants. Sci Hortic 78:159–174

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (project nos. 41275023, 41030106, and 41321064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huizhi Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Q., Liu, H. & Xu, L. Evaluating of simulated carbon flux phenology over a cropland ecosystem in a semiarid area of China with SiBcrop. Int J Biometeorol 61, 247–258 (2017). https://doi.org/10.1007/s00484-016-1207-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1207-y

Keywords

Navigation