Skip to main content

Shrubs tracing sea surface temperature—Calluna vulgaris on the Faroe Islands

Abstract

The climate of Central and Northern Europe is highly influenced by the North Atlantic Ocean due to heat transfer from lower latitudes. Detailed knowledge about spatio-temporal variability of sea surface temperature (SST) in that region is thus of high interest for climate and environmental research. Because of the close relations between ocean and coastal climate and the climate sensitivity of plant growth, annual rings of woody plants in coastal regions might be used as a proxy for SST. We show here for the first time the proxy potential of the common and widespread evergreen dwarf shrub Calluna vulgaris (heather), using the Faroe Islands as our case study. Despite its small and irregular ring structure, the species seems suitable for dendroecological investigations. Ring width showed high and significant correlations with summer and winter air temperatures and SST. The C. vulgaris chronology from the Faroe Islands, placed directly within the North Atlantic Current, clearly reflects variations in summer SSTs over an area between Iceland and Scotland. Utilising shrubs like C. vulgaris as easy accessible and annually resolved proxies offers an interesting possibility for reconstruction of the coupled climate-ocean system at high latitudes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anchukaitis KJ, Taylor MJ, Martin-Fernandez J, Pons D, Dell M, Chopp C, Castellanos EJ (2013) Annual chronology and climate response in Abies guatemalensis Rehder (Pinaceae) in Central America. Holocene 23(2):270–277. doi:10.1177/0959683612455548

    Article  Google Scholar 

  2. Babst F, Poulter B, Trouet V, Tan K, Neuwirth B, Wilson R, Carrer M, Grabner M, Tegel W, Levanic T, Panayotov M, Urbinati C, Bouriaud O, Ciais P, Frank D (2013) Site- and species-specific responses of forest growth to climate across the European continent. Glob Ecol Biogeogr 22(6):706–717. doi:10.1111/geb.12023

    Article  Google Scholar 

  3. Bär A, Bräuning A, Löffler J (2006) Dendroecology of dwarf shrubs in the high mountains of Norway—a methodological approach. Dendrochronologia 24(1):17–27. doi:10.1016/j.dendro.2006.05.001

    Article  Google Scholar 

  4. Black BA, Copenheaver CA, Frank DC, Stuckey MJ, Kormanyos RE (2009) Multi-proxy reconstructions of northeastern Pacific sea surface temperature data from trees and Pacific geoduck. Palaeogeogr Palaeoclimatol Palaeoecol 278(1–4):40–47. doi:10.1016/j.palaeo.2009.04.010

    Article  Google Scholar 

  5. Blok D, Sass-Klaassen U, Schaepman-Strub G, Heijmans MMPD, Sauren P, Berendse F (2011) What are the main climate drivers for shrub growth in Northeastern Siberian tundra? Biogeosciences 8(5):1169–1179. doi:10.5194/bg-8-1169-2011

    Article  Google Scholar 

  6. Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26(2):115–124. doi:10.1016/j.dendro.2008.01.002

    Article  Google Scholar 

  7. Buras A, Hallinger M, Wilmking M (2012) Can shrubs help to reconstruct historical glacier retreats? Environ Res Lett 7(4):44031. doi:10.1088/1748-9326/7/4/044031

    Article  Google Scholar 

  8. Canty A, Ripley B (2012) boot: Bootstrap R (S-Plus) Functions

  9. Cappelen J, Laursen EV (1998) The climate of the Faroe Islands—with climatological standard normals, 1961–1990. Technical Report 98–14

  10. Cappelen J, Laursen EV, Jørgensen PV, Kern-Hansen C (2011). DMI Monthly Climate Data Collection 1768–2010, Denmark, The Faroe Islands and Greenland. Technical Report 11–05. www.dmi.dk/dmi/tr11-05

  11. Carrer M (2011) Individualistic and time-varying tree-ring growth to climate sensitivity. PLoS ONE 6(7):e22813. doi:10.1371/journal.pone.0022813

    CAS  Article  Google Scholar 

  12. Cook ER, Kairiūkštis L (eds) (1990) Methods of dendrochronology. Applications in the environmental science. Kluwer Academic Publishers; International Institute for Applied Systems Analysis, Dordrecht, Netherlands, Boston, [S.l.]

  13. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardization forest-interior tree-ring width series for dendroclimatic studie. Tree-Ring Bull 41(45–53)

  14. Crawford RM (2000) Ecological hazards of oceanic environments. Tansley Review No. 114. New Phytol 147(2):257–281. doi:10.1046/j.1469-8137.2000.00705.x

    Article  Google Scholar 

  15. Cunningham LK, Austin WE, Knudsen KL, Eiriksson J, Scourse JD, Wanamaker AD, Butler PG, Cage AG, Richter T, Husum K, Hald M, Andersson C, Zorita E, Linderholm HW, Gunnarson BE, Sicre M, Sejrup HP, Jiang H, Wilson RJ (2013) Reconstructions of surface ocean conditions from the northeast Atlantic and Nordic seas during the last millennium. The Holocene 23(7):921–935. doi:10.1177/0959683613479677

    Article  Google Scholar 

  16. D’Arrigo R, Buckley B, Kaplan S, Woollett J (2003) Interannual to multidecadal modes of Labrador climate variability inferred from tree rings. Clim Dyn 20:219–228

    Google Scholar 

  17. D'Arrigo R, Wiles G, Jacoby G, Villalba R (1999) North Pacific sea surface temperatures: past variations inferred from tree rings. Geophys Res Lett 26:2757–2760

    Article  Google Scholar 

  18. Efron B, Gong G (1983) A leisurely look at the bootstrap, the jackknife, and cross-validation. Am Stat 37:36–48

    Google Scholar 

  19. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science 1(1):54–75. doi:10.1214/ss/1177013815

    Article  Google Scholar 

  20. Forbes BC, Fauria MM, Zetterberg P (2010) Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Glob Chang Biol 16(5):1542–1554. doi:10.1111/j.1365-2486.2009.02047.x

    Article  Google Scholar 

  21. Fosaa AM (2001) A review of plant communities of the Faroe Islands. Fróðskaparrit 48:41–54

    Google Scholar 

  22. Fosaa AM (2004a) Altitudinal distribution of plant communities in the Faroe Islands. Fróðskaparrit 51:217–236

    Google Scholar 

  23. Fosaa AM (2004b) Biodiversity patterns of vascular plant species in mountain vegetation in the Faroe Islands. Divers Distrib 10(3):217–223. doi:10.1111/j.1366-9516.2004.00080.x

    Article  Google Scholar 

  24. Fritts HC (2001) Tree rings and climate. Blackburn Press, Caldwell

    Google Scholar 

  25. Gimingham CH (1960) Calluna Salisb. J Ecol 48(2):455. doi:10.2307/2257528

    Article  Google Scholar 

  26. Hallinger M, Wilmking M (2011) No change without a cause—why climate change remains the most plausible reason for shrub growth dynamics in Scandinavia. New Phytol 189(4):902–908. doi:10.1111/j.1469-8137.2010.03624.x

    Article  Google Scholar 

  27. Hallinger M, Manthey M, Wilmking M (2010) Establishing a missing link: warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytol 186(4):890–899. doi:10.1111/j.1469-8137.2010.03223.x

    Article  Google Scholar 

  28. Hanhijärvi S, Tingley MP, Korhola A (2013) Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic Region over the last 2,000 years. Clim Dyn 41(7–8):2039–2060. doi:10.1007/s00382-013-1701-4

    Article  Google Scholar 

  29. Hansen B, Østerhus S (2000) North Atlantic–Nordic Seas exchanges. Prog Oceanogr 45(2):109–208. doi:10.1016/S0079-6611(99)00052-X

    Article  Google Scholar 

  30. Hansen B, Hátún H, Kristiansen R, Olsen SM, Østerhus S (2010) Stability and forcing of the Iceland-Faroe inflow of water, heat, and salt to the Arctic. Ocean Sci 6(4):1013–1026. doi:10.5194/os-6-1013-2010

    CAS  Article  Google Scholar 

  31. Isachsen PE, Mauritzen C, Svendsen H (2007) Dense water formation in the Nordic Seas diagnosed from sea surface buoyancy fluxes. Deep-Sea Res I Oceanogr Res Pap 54(1):22–41. doi:10.1016/j.dsr.2006.09.008

    Article  Google Scholar 

  32. Kolishchuk V (1990) Dendroclimatological study of prostrate woody plants. In: Cook ER, Kairiūkštis L (eds) Methods of dendrochronology. Applications in the environmental science. Kluwer Academic Publishers; International Institute for Applied Systems Analysis, Dordrecht, pp 51–55

    Google Scholar 

  33. Körner C (2003) Alpine plant life. Functional plant ecology of high mountain ecosystems, 2nd edn. Springer, Berlin

    Google Scholar 

  34. Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul 8(1):3–30. doi:10.1145/272991.272995

    Article  Google Scholar 

  35. Myers-Smith IH, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D, Tape KD, Macias-Fauria M, Sass-Klaassen U, Lévesque E, Boudreau S, Ropars P, Hermanutz L, Trant A, Collier LS, Weijers S, Rozema J, Rayback SA, Schmidt NM, Schaepman-Strub G, Wipf S, Rixen C, Ménard CB, Venn S, Goetz S, Andreu-Hayles L, Elmendorf S, Ravolainen V, Welker J, Grogan P, Epstein HE, Hik DS (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6(4):45509. doi:10.1088/1748-9326/6/4/045509

    Article  Google Scholar 

  36. Pompa-García M, Miranda-Aragón L, Aguirre-Salado CA (2014) Tree growth response to ENSO in Durango, Mexico. Int J Biometeorol. doi:10.1007/s00484-014-0828-2

    Google Scholar 

  37. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  38. Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419:207–214

    CAS  Article  Google Scholar 

  39. Rahmstorf S, Ganopolski A (1999) Long-term global warming scenarios computed with an efficient coupled climate model. Clim Chang 43:353–367

    CAS  Article  Google Scholar 

  40. Rayback SA, Henry GH (2006) Reconstruction of summer temperature for a Canadian High Arctic site from retrospective analysis of the dwarf shrub, Cassiope tetragona. Arct Antarct Alp Res 38(2):228–238. doi:10.1657/1523-0430(2006)38[228:ROSTFA]2.0.CO;2

    Article  Google Scholar 

  41. Rayback SA, Lini A, Henry G (2011) Spatial variability of the dominant climate signal in Cassiope tetragona from sites in Arctic Canada. Arctic 64(1):98–114

    Article  Google Scholar 

  42. Rayner MC (1913) The ecology of Calluna vulgaris. New Phytol 12(2):59–78. doi:10.1111/j.1469-8137.1913.tb05680.x

    Article  Google Scholar 

  43. Reynolds DJ, Butler PG, Williams SM, Scourse JD, Richardson CA, Wanamaker AD, Austin W, Cage AG, Sayer M (2013) A multiproxy reconstruction of Hebridean (NW Scotland) spring sea surface temperatures between AD 1805 and 2010. Palaeogeogr Palaeoclimatol Palaeoecol 386:275–285. doi:10.1016/j.palaeo.2013.05.029

    Article  Google Scholar 

  44. Rozema J, Weijers S, Broekman R, Blokker P, Buizer B, Werleman C, El Yaqine H, Hoogedoorn H, Fuertes MM, Cooper E (2009) Annual growth of Cassiope tetragona as a proxy for Arctic climate: developing correlative and experimental transfer functions to reconstruct past summer temperature on a millennial time scale. Glob Chang Biol 15(7):1703–1715. doi:10.1111/j.1365-2486.2009.01858.x

    Article  Google Scholar 

  45. Schmidt NM, Baittinger C, Forchhammer MC (2006) Reconstructing century-long snow regimes using estimates of High Arctic Salix arctica radial growth. Arct Antarct Alp Res 38(2):257–262. doi:10.1657/1523-0430(2006)38[257:RCSRUE]2.0.CO;2

    Article  Google Scholar 

  46. Schweingruber FH (1988) Tree rings. Reidel

  47. Schweingruber F, Poschlod P (2005) Growth rings in herbs and shrubs: life span, age determination and stem anatomy. For Snow Landsc Res 79(3):195–415

    Google Scholar 

  48. Schweingruber FH, Börner A, Schulze E (2006) Atlas of woody plant stems. Evolution, structure, and environmental modifications. Springer, Berlin

    Google Scholar 

  49. Sicre M, Jacob J, Ezat U, Rousse S, Kissel C, Yiou P, Eiríksson J, Knudsen KL, Jansen E, Turon J (2008) Decadal variability of sea surface temperatures off North Iceland over the last 2000 years. Earth Planet Sci Lett 268(1–2):137–142. doi:10.1016/j.epsl.2008.01.011

    CAS  Article  Google Scholar 

  50. Speer JH (2010) Fundamentals of tree-ring research. University of Arizona Press, Tucson

    Google Scholar 

  51. Thomson AM, Simpson IA, Brown JL (2005) Sustainable rangeland grazing in Norse Faroe. Hum Ecol 33(5):737–761. doi:10.1007/s10745-005-7596-x

    Article  Google Scholar 

  52. Wanamaker AD, Butler PG, Scourse JD, Heinemeier J, Eiríksson J, Knudsen KL, Richardson CA (2012) Surface changes in the North Atlantic meridional overturning circulation during the last millennium. Nat Commun 3:899. doi:10.1038/ncomms1901

    Article  Google Scholar 

  53. Weijers S, Broekman R, Rozema J (2010) Dendrochronology in the High Arctic: July air temperatures reconstructed from annual shoot length growth of the circumarctic dwarf shrub Cassiope tetragona. Quat Sci Rev 29(27–28):3831–3842. doi:10.1016/j.quascirev.2010.09.003

    Article  Google Scholar 

  54. Weijers S, Wagner-Cremer F, Sass-Klaassen U, Broekman R, Rozema J (2013) Reconstructing High Arctic growing season intensity from shoot length growth of a dwarf shrub. Holocene 23(5):721–731. doi:10.1177/0959683612470178

    Article  Google Scholar 

  55. Wigley TM, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendrociimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  56. Wilmking M, Hallinger M, van Bogaert R, Kyncl T, Babst F, Hahne W, Juday GP, de Luis M, Novak K, Völlm C (2012) Continuously missing outer rings in woody plants at their distributional margins. Dendrochronologia 30(3):213–222. doi:10.1016/j.dendro.2011.10.001

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from INTERACT (grant agreement no. 262693), under the European Community’s Seventh Framework Programme. This study is a contribution to the virtual ICLEA institute funded by the Helmholtz association.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ilka Beil.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beil, I., Buras, A., Hallinger, M. et al. Shrubs tracing sea surface temperature—Calluna vulgaris on the Faroe Islands. Int J Biometeorol 59, 1567–1575 (2015). https://doi.org/10.1007/s00484-015-0963-4

Download citation

Keywords

  • Climate proxy
  • Serial sectioning
  • Dendrochronology
  • Nordic Seas
  • SST
  • Oceanography