Skip to main content

Climatic warming above the Arctic Circle: are there trends in timing and length of the thermal growing season in Murmansk Region (Russia) between 1951 and 2012?

Abstract

Anomalies in the timing of the thermal growing season have become obvious in the NE part of Fennoscandia since 2000. They are in accordance with climatic changes reported for Europe and Fennoscandia. The actual length of the growing season reached 120 days on average, onset on 30 May and ending on 27 September (1981–2010). Shifts in the timing of the growing season and its mean prolongation by 18.5 days/62a are demonstrated for Murmansk Region (1951–2012). In this period, the onset of the growing season advanced by 7.1 days/62a, while the end was extended by 11.4 days/62a. The delay in the end of the growing season is similar to the entire Fennoscandian pattern but it has not been detected in the rest of Europe. The regional pattern of climatic regimes in Murmansk Region remained stable in comparison with earlier climatic maps (1971). However, the actual shifts in the timing of the growing season were more pronounced in colder (oceanic and mountainous) parts. Recent climatic trends could influence the retreat of the tundra zone and changes in the forest line. Losses of tundra biodiversity and enrichment of the northern taiga by southern species could be expected from present climatic trends.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    A maximum elevation is given in brackets for each mountain range.

References

  1. Alexandrova VD (1977) Geobotanical subdivision of the Arctic and Antarctic. Nauka, Leningrad, 189 pp; (in Russian)

    Google Scholar 

  2. Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jónsdóttir IS, Laine K, Lévesque E, Marion GM, Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Totland Ø, Turner PL, Walker LJ, Webber PJ, Welker JM, Wookey PA (1999) Response patterns of tundra plant species to experimental warming: a meta-analysis of the International Tundra Experiment. Ecol Monogr 69:491–511

    Google Scholar 

  3. Bartalev SA, Belward AS, Erchov DV, Isaev AS (2003) A new SPOT4-VEGETATION derived land cover map of Northern Eurasia. Int J Remote Sens 24(9):1977–1982

    Article  Google Scholar 

  4. Batllori E, Gutiérrez E (2008) Regional tree line dynamics in response to global change in the Pyrenees. J Ecol 98:1275–1288

    Article  Google Scholar 

  5. Belkina OA, Konstantinova NA, Kostina VA (1991) (Flora of the higher plants of the Lovozerskije Mts. (vascular plants and mosses)). Nauka, St.-Petersburg, 206 pp (In Russian)

  6. Blinova I (2009a) Orchid biology in the NE Fennoscadia and strategies of their survival at the northern range. Manuscript of Thesis for the degree of Dr. Sci. in Biology. Moscow, 552 pp (in Russian)

  7. Blinova I (2009b) The number of individuals and population dynamics of orchid populations at the northern limit of distribution in Europe. Bot Zh 94(2):212–240 (in Russian)

    Google Scholar 

  8. Blinova I (2011) The traits of seasonal development of orchid species north of the Arctic Circle. Bot Zh 96(3):396–411 (in Russian)

    Google Scholar 

  9. Blinova I, Chmielewski F-M (2008) Subarctic warming and its influence on the growth of orchid populations in the extreme North-East of Europe (Murmansk Region). J Eur Orch 40(4):663–680

    Google Scholar 

  10. Blinova I, Willems JH, van Reenen J (2003) Intraspecific variation in Orchid populations in two different climatic areas in Europe: Murmansk Region and The Netherlands. I. Phenology. J Eur Orch 35(1):79–99

    Google Scholar 

  11. Callagan TV, Körner C, Heal OW, Lee SE, Cornelissen JHC (1998) Scenarios for ecosystem responses to global change. In: Heal OW, Callaghan TV, Cornelissen JHC, Körner C, and Lee SE (eds) Global change in Europe’s cold regions. European Commission Ecosystems Research Report 27, Luxembourg, pp. 11–63

  12. Callaghan TV, Werkman BR, Crawford RMM (2002a) The tundra–taiga interface and its dynamics: concepts and applications. Ambio Spec Rep 12:6–14

    Google Scholar 

  13. Callaghan TV, Crawford RMM, Eronen M, Hofgaard A, Payette S, Rees WG, Skre O, Seinbjцrnsson B, Vlassova TK, Werkman BR (2002b) The dynamics of the tundra–taiga boundary: an overview and suggested coordinated and integrated approach to research. Ambio Spec Rep 12:3–5

    Google Scholar 

  14. CAVM Team (2003) Circumpolar Arctic vegetation map. Scale 1:7,500,000. Conservation of Arctic Flora and Fauna (CAFF) Map No. 1. U.S. Fish and Wildlife Service, Anchorage, Alaska

  15. Chernen’kova TV, Puzachenko MYu, Koroleva NE, Basova EV (2013) Assessment of forest spatial differentiation in Murmansk Province using field surveys and remote sensing data. Contemporary Problems of Ecology 6(7):746–754. Original Russian Text © TV. Chernen’kova TV, Puzachenko MYu, Koroleva NE, Basova EV 2013, published in Lesovedenie 5:86–96

  16. Chernov EG (1953) Vegetation of Murmansk Region. Manuscriptt of Ph.Thesis. Archive of Polar-Alpine Botanical Garden-Institute, Kirovsk, 274 pp (in Russian)

  17. Chernov EG (1971) Vegetation map. In: Atlas of Murmansk Region. GUGK, Moscow (in Russian)

  18. Chmielewski F-M (2013) Phenology in agriculture and horticulture (chapter 29). In: Schwartz MD (ed), Phenology: an integrative environmental science. Springer Science+Business Media B.V. Dordrecht, 2nd Edition, 539–561 pp

  19. Chmielewski F-M, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112

    Article  Google Scholar 

  20. Chmielewski F-M, Rötzer T (2002) Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes. Clim Res 19:257–264

    Article  Google Scholar 

  21. Chmielewski F-M, Heider S, Moryson S, Bruns E (2013) International Phenological Observation Networks—concept of IPG and GPM (chapter 8). In: Schwartz MD (Ed): Phenology: an integrative environmental science. Springer Science+Business Media B.V. Dordrecht, 2nd Edition, 137–153 pp

  22. Elven R (ed) (2014) Annotated checklist of the Panarctic Flora (PAF). Vascular plants. Version 1.0. University of Oslo, Oslo. http://nhm2.uio.no/paf/ Accessed on 25.02.2014

  23. Evzerov VYA (2012) Peat deposits of Murmansk Region. Vestnik of Voronezhskij State University. Geol Ser 2:153–157 (in Russian)

    Google Scholar 

  24. Fronzek S, Luoto M, Carter TR (2006) Potential effect of climate change on the distribution of palsa mires in subarctic Fennoscandia. Clim Res 32:1–12

    Article  Google Scholar 

  25. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113, D20119. doi:10.1029/2008JD010201

    Article  Google Scholar 

  26. Hofgaard A, Tшmmervik H, Rees G, Hanssen F (2013) Latitudinal forest advance in northernmost Norway since the early 20th century. J Biogeogr 40:938–949

    Article  Google Scholar 

  27. Høgda KA, Karlsen SR (2013) Trends in the start of the growing season in Fennoscandia 1982–2011. Remote Sens 5:4304–4318

    Article  Google Scholar 

  28. Karlsen SR, Elvebakk A, Høgda KA, Johansen B (2006) Satellite-based mapping of the growing season and bioclimatic zones in Fennoscandia. Glob Ecol Biogeogr 15:416–430

    Article  Google Scholar 

  29. Karlsen SR, Solheim I, Beck PSA, Høgda KA, Wielgolaski FE, Tømmervik H (2007) Variability of the start of the growing season in Fennoscandia, 1982–2002. Int J Biometeorol 51:513–524

    Article  Google Scholar 

  30. Karlsen SR, Høgda KA, Wielgolaski FE, Tolvanen A, Tommervik H, Poikolainen J, Kubin E (2009) Growing-season trends in Fennoscandia 1982–2006, determined from satellite and phenology data. Clim Res 39:275–286

    Article  Google Scholar 

  31. Kihlman AO (1890) Pflanzenbiologische Studien aus Russisch-Lappland. Acta Soc. Fauna Flora Fennica 6 (3):1–264+appendix 24 pp. + 14 Plates

  32. Körner C (2007) Climatic treelines: conventions, global patterns, causes. Erdkunde 61:316–324

    Article  Google Scholar 

  33. Koroleva NE (1994) Phytosociological survey of the tundra vegetation of the Kola Peninsula, Russia. J Veg Sci 5:803–812

    Article  Google Scholar 

  34. Koroleva NE (2008) Main biotopes of mountain and zonal tundra of Murmansk Region. Vestn Murmansk State Tech Univ 11(3):533–543 (in Russian)

    Google Scholar 

  35. Koroleva NE (2011) Main biotopes of north-taiga forest and mountain birch forest of Murmansk Region: landscape and botanical diversity, reasons for protection. Vestn Murmansk State Tech Univ 14(4):819–832 (in Russian)

    Google Scholar 

  36. Koroleva NE, Loshkareva AR (2013) How a key area on the boundary between tundra and forest tundra in the Kola Peninsula is reflected in existing vegetation maps. Proc Karelian Sci Cent RAS 2:3–21 (in Russian)

    Google Scholar 

  37. Koroleva NE, Pereversev VN (2007) Zonal tundra vegetation and soil types in Murmansk Region. Bull MOIP Sect Biolog 112(4):23–30 (In Russian)

    Google Scholar 

  38. Korovkin AA (1934) Geobotanical review of Khibiny Mts. Izv. All-Union Geogr Soc 66(6):787–826 (in Russian)

    Google Scholar 

  39. Kozlov MV, Berlina NG (2002) Decline in length of the summer season on the Kola Peninsula, Russia. Clim Chang 54:387–398

    Article  CAS  Google Scholar 

  40. Kullman L (2000) Tree-limit rise and recent warming: a geoecological case of study from the Swedish Scandes. Nor Geogr Tidsskr-Nor J Geogr 54:49–59

    Article  Google Scholar 

  41. Kullman L (2001) 20th century climate warming and tree-limit rise in the Southern Scandes of Sweden. Ambio 30:72–80

    CAS  Google Scholar 

  42. Kullman L (2002) Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes. J Ecol 90:68–77

    Article  Google Scholar 

  43. Linderholm HW (2006) Growing season changes in the last century. Agric For Meteorol 137:1–14

    Article  Google Scholar 

  44. Loshkareva AR, Koroleva NE (2013) Special traits of the large-scale mapping in forest-tundra zone. Arct North 10:125–159 (in Russian)

    Google Scholar 

  45. Mathisen IE, Mikheeva A, Tutubalina OV, Aune S, Hofgaard A (2014) Fifty years of tree line change in the Khibiny Mountains, Russia: advantages of combined remote sensing and dendroecological approaches. Appl Veg Sci 17:6–16

    Article  Google Scholar 

  46. Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44:76–81

    Article  CAS  Google Scholar 

  47. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    Article  CAS  Google Scholar 

  48. Menzel A, Sparks T, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  49. Mishkin VA (1953) The flora of the Khibiny Mountains: analysis and history. USSR Academy of Sciences, Moscow, 113 pp; (in Russian)

    Google Scholar 

  50. Öberg L (2013) Treeline dynamics in short and long term perspectives: observational and historical evidence from the southern Swedish Scandes. Thesis for the degree of Doctoral of Philosophy. Sundsvall, Sweden. 136 pp

  51. Ovaskainen O, Skorokhodova S, Yakovleva M, Sukhov A, Kutenkov A, Kutenkova N, Shcherbakov A, Meyke E, Delgado MM (2013) Community-level phenological response to climate change. Proc Natl Acad Sci. doi:10.1073/pnas.1305533110

    Google Scholar 

  52. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (Eds) (2007) Climate Change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge UP, Cambridge, UK, 976 pp

  53. Puppi G (2011) Phenological traits of vegetation: examples of some phytocoenoses from selected vegetation series. Fitosociologia 48 (2) suppl. 1: 41–46

  54. Ramenskaja ML (1976) Analysis of the flora of Murmansk Region and Karelia. Scientific report. Vol 1, 243 pp, Vol 2, 294 pp. Archive of Polar-Alpine Botanical Garden-Institute, Kirovsk. (in Russian)

  55. Ramenskaya ML (1983) Analysis of the flora of Murmansk Region and Karelia. Nauka, Leningrad, 215 pp; (in Russian)

    Google Scholar 

  56. Rathcke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Ann Rev Ecol Syst 16:179–214

    Article  Google Scholar 

  57. Regel C (1935) Die Vegetationsverhдltnisse der Halbinsel Kola: 1. Lieferung. Verlag des Repertoriums, Berlin-Dahlem

    Google Scholar 

  58. Rötzer T, Chmielewski F-M (2001) Phenological maps of Europe. Clim Res 18:249–257

    Article  Google Scholar 

  59. Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Chang Biol 12:343–351

    Article  Google Scholar 

  60. Shlyakov RN, Konstantinova NA (1982) Conspectus of the bryophyte flora of the Murmansk Region. Akademiya Nauk SSR, Apatity, 222 pp; (in Russian)

    Google Scholar 

  61. Shutova E, Wielgolaski FE, Karlsen SR, Makarova O, Berlina N, Filimonova T, Haraldsson E, Aspholm PE, Flø L, Høgda KA (2006) Growing seasons of Nordic mountain birch in northernmost Europe as indicated by long-term field studies and analyses of satellite images. Int J Biometeorol 51(2):155–166

    Article  CAS  Google Scholar 

  62. Sparks TH, Menzel A (2002) Observed changes in seasons: an overview. Int J Climatol 22:1715–1725

    Article  Google Scholar 

  63. Stainforth DA, Chapman SC, Watkins NW (2013) Mapping climate change in European temperature distributions. Environ Res Lett 8:034031 (9 pp)

  64. Stöckli R, Vidale PL (2004) European plant phenology and climate as seen in a 20-year AVHRR land-surface parameter dataset. Int J Remote Sens 25(17):3303–3330

    Article  Google Scholar 

  65. Strelkov SA (1973) Morphostructures of the northeastern Baltic shield and trends in their formation. In: Paleogeography and morphostructure of Kola Peninsula. Nauka, Leningrad, pp 5–79, in Russian

    Google Scholar 

  66. Strelkov SA, Evzerov VYA, Koshechkin BI, Rubinraut GS, Afanasjev AP, Lebedeva RM, Kagan LYA (1976) The history of the relief and unconsolidated deposits formation NE Baltic Shield. Nauka, Leningrad, 164 pp (In Russian)

  67. Uotila P (2013) Finnish botanists on the Kola Peninsula (Russia) up to 1918. Memoranda Soc pro Fauna Flora Fenn 89:75–104

    Google Scholar 

  68. Urbanavichus G, Ahti T, Urbanavichene I (2008) Catalogue of lichens and allied fungi of Murmansk region, Russia. Norrlinia 17:1–80

    Google Scholar 

  69. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  70. Xu L, Myneni RB, Chapin FS, Callaghan TV, Pinzon JE, Tucker CJ, Zhu Z, Bi J, Ciais P, Tшmmervik H, Euskirchen ES, Forbes BC, Piao SL, Anderson BT, Ganguly S, Nemani RR, Goetz SJ, Beck PSA, Bunn AG, Cao C, Stroeve JC (2013) Temperature and vegetation seasonality diminishment over northern lands. Nat Clim Chang 3:581–586

    Google Scholar 

  71. Yakovlev VA (1961) Climate of Murmansk Region. Murmansk Knizhn Izd, Murmansk (in Russian)

    Google Scholar 

  72. Yakovlev VA, Kozlova LG (1971) Climatic maps. In: Atlas of Murmansk Region. Moscow: GUGK, 1971 (in Russian)

  73. Zaitseva IV, Kobyakov KN, Nikonov VV, Smirnov DY (2002) Old-growth forests of Murmansk Region. Lesovedenie 2:14–22 (in Russian)

    Google Scholar 

  74. Zinserling YD (1934) Plant cover geography of Northeastern European Russia. Nauka, Leningrad, 378 pp; (in Russian)

    Google Scholar 

Download references

Acknowledgments

We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu).

We are grateful to P. Uotila (Helsinki) for discussions concerning the borders of the biogeographic provinces of Eastern Fennoscandia; N. Koroleva (Kirovsk) and R. Lampinen (Helsinki) for discussion and for links to vegetation maps; and H. Tømmervik (Tromsø, Norway) and A. Hofgaard (Trondheim, Norway) for recent literature on climatic changes in Fennoscandia. We are obliged to G. H. Harper (RBGE, UK) for checking the quality of our English.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ilona Blinova.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blinova, I., Chmielewski, FM. Climatic warming above the Arctic Circle: are there trends in timing and length of the thermal growing season in Murmansk Region (Russia) between 1951 and 2012?. Int J Biometeorol 59, 693–705 (2015). https://doi.org/10.1007/s00484-014-0880-y

Download citation

Keywords

  • Climate change and warming
  • Growing season
  • Murmansk Region
  • Biogeographic provinces
  • Tundra zone
  • North taiga zone