International Journal of Biometeorology

, Volume 58, Issue 5, pp 799–808 | Cite as

The influence of meteorological and geomagnetic factors on acute myocardial infarction and brain stroke in Moscow, Russia

  • Dmitry ShaposhnikovEmail author
  • Boris Revich
  • Yuri Gurfinkel
  • Elena Naumova
Original Paper


Evidence of the impact of air temperature and pressure on cardiovascular morbidity is still quite limited and controversial, and even less is known about the potential influence of geomagnetic activity. The objective of this study was to assess impacts of air temperature, barometric pressure and geomagnetic activity on hospitalizations with myocardial infarctions and brain strokes. We studied 2,833 myocardial infarctions and 1,096 brain strokes registered in two Moscow hospitals between 1992 and 2005. Daily event rates were linked with meteorological and geomagnetic conditions, using generalized linear model with controls for day of the week, seasonal and long-term trends. The number of myocardial infarctions decreased with temperature, displayed a U-shaped relationship with pressure and variations in pressure, and increased with geomagnetic activity. The number of strokes increased with temperature, daily temperature range and geomagnetic activity. Detrimental effects on strokes of low pressure and falling pressure were observed. Relative risks of infarctions and strokes during geomagnetic storms were 1.29 (95 % CI 1.19–1.40) and 1.25 (1.10–1.42), respectively. The number of strokes doubled during cold spells. The influence of barometric pressure on hospitalizations was relatively greater than the influence of geomagnetic activity, and the influence of temperature was greater than the influence of pressure. Brain strokes were more sensitive to inclement weather than myocardial infarctions. This paper provides quantitative estimates of the expected increases in hospital admissions on the worst days and can help to develop preventive health plans for cardiovascular diseases.


Geomagnetic storm Barometric pressure Daily temperature range Cardiovascular disease Hospitalization Risk factors 



The authors thank Dr. Julia Shugai from the Skobeltsyn Institute of Nuclear Physics for her consultations on geomagnetic field issues. This research was supported by the grant program of Presidium of Russian Academy of Sciences “Fundamental Sciences for Medicine”.


  1. Abe T, Ohde S, Ishimatsu S, Ogata H, Hasegawa T, Nakamura T, Tokuda Y (2008) Effects of meteorological factors on the onset of subarachnoid hemorrhage: a time-series analysis. J Clin Neurosci 15(9):1005–1010. doi: 10.1016/j.jocn.2007.07.081 CrossRefGoogle Scholar
  2. Abrignani MG, Corrao S, Biondo GB, Renda N, Braschi A, Novo G, Di Girolamo A, Braschi GB, Novo S (2009) Influence of climatic variables on acute myocardial infarction hospital admissions. Int J Cardiol 137(2):123–129. doi: 10.1016/j.ijcard.2008.06.036 CrossRefGoogle Scholar
  3. Berthelier A, Menvielle M (1993) Computation of AK equivalent amplitude. Int Assoc Geomagn Aeron News 32:23–25Google Scholar
  4. Bhaskaran K, Hajat S, Haines A, Herrett E, Wilkinson P, Smeeth L (2009) Effects of ambient temperature on the incidence of myocardial infarction. Heart 95:1760–1769. doi: 10.1136/hrt.2009.175000 CrossRefGoogle Scholar
  5. Brezinski DA, Tofler GH, Muller JE, Pohjola-Sintonen S, Willich SN, Schafer AI, Czeisler CA, Williams GH (1988) Morning increase in platelet aggregability. Association with assumption of the upright posture. Circulation 78:35–40CrossRefGoogle Scholar
  6. Chang CL, Shipley M, Marmot M, Poulter N (2004) Lower ambient temperature was associated with an increased risk of hospitalization for stroke and acute myocardial infarction in young women. J Clin Epidemiol 57:749–757. doi: 10.1016/j.jclinepi.2003.10.016 CrossRefGoogle Scholar
  7. Coelho FM, Santos BF, Cendoroglo Neto M, Lisboa LF, Cypriano AS, Lopes TO, Miranda MJ, Avila AM, Alonso JB, Pinto HS (2010) Temperature variation in the 24 hours before the initial symptoms of stroke. Arq Neuropsiquiatr 68(2):242–245. doi: 10.1590/S0004-282X2010000200017 CrossRefGoogle Scholar
  8. Cornelissen G, Halberg F, Breus TK, Syutkina EV, Baevsky R, Weydahl A et al (2002) Non-photic solar associations of heart rate variability and myocardial infarction. J Atmos Solar Terr Phys 64:707–772. doi: 10.1016/S1364-6826(02)00032-9 CrossRefGoogle Scholar
  9. Dawson J, Weir C, Wright F, Bryden C, Aslanyan S, Lees K, Bird W, Walters M (2008) Associations between meteorological variables and acute stroke hospital admissions in the west of Scotland. Acta Neurol Scand 117(2):85–89. doi: 10.1111/j.1600-0404.2007.00916.x Google Scholar
  10. Delyukov A, Gorgo Y, Cornelissen G, Otsuka K, Halberg F (2001) Natural environmental associations in a 50-day human electrocardiogram. Int J Biometeorol 45(2):90–99. doi: 10.1007/s004840100086 CrossRefGoogle Scholar
  11. Dormann C, Elith J, Bacher S, Buchmann C, Carl G, Carré G et al (2012) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography. doi: 10.1111/j.1600-0587.2012.07348.x Google Scholar
  12. Fedin AI, Rumiantseva SA, Kuznetsov OR, Evseev VN (2004) Antloxidant and actoprotector therapy of ischemic stroke. Tactic-Studio, Moscow (in Russian)Google Scholar
  13. Feigin VL, Nikitin YP, Bots ML, Vinogradova TE, Grobbee DE (2000) A population-based study of the associations of stroke occurrence with weather parameters in Siberia, Russia (1982–1992). Eur J Neurol 7:171–178CrossRefGoogle Scholar
  14. Ghione S, Mezzasalma L, Del Seppia C, Papi F (1998) Do geomagnetic disturbances of solar origin affect arterial blood pressure? J Hum Hypertens 12:749–754CrossRefGoogle Scholar
  15. Giua A, Abbas M, Murgia N, Corea F (2010) Climate and stroke: a controversial association. Int J Biometeorol 54:1–3. doi: 10.1007/s00484-009-0253-0 CrossRefGoogle Scholar
  16. Gmitrov J, Gmitrova A (2004) Geomagnetic field effect on cardiovascular regulation. Bioelectromagnetics 25:92–101. doi: 10.1002/bem.10173 CrossRefGoogle Scholar
  17. Gmitrov J, Ohkubo C (1999) Geomagnetic field decreases cardiovascular variability. Electro-Magnetobiol 18:291–303. doi: 10.3109/15368379909022585 Google Scholar
  18. Goldberg MS, Giannetti N, Burnett RT, Mayo NE, Valois MF, Brophy JM (2008) A panel study in congestive heart failure to estimate the short-term effects from personal factors and environmental conditions on oxygen saturation and pulse rate. Occup Environ Med 65:659–666. doi: 10.1136/oem.2007.034934 CrossRefGoogle Scholar
  19. Gurfinkel YI, Voeikov VL (2006) Solar activity effects on blood of patients with coronary heart disease. In: Atkov OY, Gurfinkel YI (eds) Proceedings of International Scientific Workshop «Space weather effects on biological systems and human health». Reprocenter, Moscow, pp 101–103 (in Russian)Google Scholar
  20. Gurfinkel YI, Liubimov VV, Oraevski VN, Parfenova LM, Yuriev AS (1995) The effect of geomagnetic disturbances on capillary blood flow in ischemic heart disease patients. Biofizika 40(4):793–799 (in Russian)Google Scholar
  21. Hong YC, Rha JH, Lee JT, Ha EH, Kwon HJ, Kim H (2003) Ischemic stroke associated with decrease in temperature. Epidemiology 14:473–478. doi: 10.1097/01.ede.0000078420.82023.e3 Google Scholar
  22. Hori A, Hashizume M, Tsuda Y, Tsukahara T, Nomiyama T (2012) Effects of weather variability and air pollutants on emergency admissions for cardiovascular and cerebrovascular diseases. Int J Environ Health Res 22(5):416–430. doi: 10.1080/09603123.2011.650155 CrossRefGoogle Scholar
  23. Houck PD, Lethen JE, Riggs MW, Gantt DS, Denmer GJ (2005) Relation of atmospheric pressure changes and the occurrences of acute myocardial infarction and stroke. Am J Cardiol 96:45–51. doi: 10.1080/09603123.2011.650155 Google Scholar
  24. Interfax (2012) Press release of 16.05.12. Accessed February 20 2013 (in Russian)
  25. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group (1992) Morning peak in the incidence of myocardial infarction: experience in the ISIS-2 trial. Eur Heart J 13(5):594–598Google Scholar
  26. Jimenez-Conde J, Ois A, Gomis M, Rodriguez-Campello A, Cuadrado-Godia E, Subirana I, Roquer J (2008) Weather as a trigger of stroke. Daily meteorological factors and incidence of stroke subtypes. Cerebrovasc Dis 26(4):348–354. doi: 10.1159/000151637 CrossRefGoogle Scholar
  27. Kavanagh A, Denton M (2007) High-speed solar-wind streams and geospace interactions. Astron Geophys 48:6.24–6.26. doi: 10.1111/j.1468-4004.2007.48624.x CrossRefGoogle Scholar
  28. Kloner RA (2006) Natural and unnatural triggers of myocardial infarction. Prog Cardiovasc Dis 48(4):285–300. doi: 10.1016/j.pcad.2005.07.001 CrossRefGoogle Scholar
  29. Koton S (2003) Triggering risk factors for ischemic stroke. Dissertation, Tel Aviv University. Accessed 20 February 2013
  30. Kyobutungi C, Grau A, Stieglbauer G, Becher H (2005) Absolute temperature, tem­perature changes and stroke risk: a case-crossover study. Eur J Epidemiol 20:693–698. doi: 10.1007/s10654-005-0703-x CrossRefGoogle Scholar
  31. Landers AT, Narotam PK, Govender ST, van Dellen JR (1997) The effect of changes in barometric pressure on the risk of rupture of intracranial aneurysms. Br J Neurosurg 11(3):191–195. doi: 10.1080/02688699746230 CrossRefGoogle Scholar
  32. Lee JH, Chae SC, Yang DH, Park HS, Cho Y, Jun JE, Park WH, Kam S, Lee WK, Kim YJ, Kim KS, Hur SH, Jeong MH, Korea Acute Myocardial Infarction Registry Investigators (2010) Influence of weather on daily hospital admissions for acute myocardial infarction (from the Korea Acute Myocardial Infarction Registry). Int J Cardiol 144(1):16–21. doi: 10.1016/j.ijcard.2009.03.122 CrossRefGoogle Scholar
  33. Liemohn MW, Jazowski M, Kozyra JU, Ganushkina N, Thomsen MF (2010) CIR versus CME drivers of the ring current during intense magnetic storms. Proc R Soc A 466:3305–3328. doi: 10.1098/rspa.2010.0075 CrossRefGoogle Scholar
  34. Lim YH, Kim H (2011) Diurnal temperature range and cause-specific cardiovascular hospital admission in Seoul, Korea – time-series analysis and temperature-matched case-crossover design. Epidemiology 22(1):S13–S14. doi: 10.1097/01.ede.0000391696.12070.b1 CrossRefGoogle Scholar
  35. Linares С, Diaz J (2008) Impact of high temperatures on hospital admissions: comparative analysis with previous studies about mortality (Madrid). Eur J Public Health 18:317–322. doi: 10.1093/eurpub/ckm108 CrossRefGoogle Scholar
  36. Magalhães R, Silva MC, Correia M, Bailey T (2011) Are stroke occurrence and outcome related to weather parameters? Results from a population-based study in northern Portugal. Cerebrovasc Dis 32(6):542–551. doi: 10.1159/000331473 CrossRefGoogle Scholar
  37. McArthur K, Dawson J, Walters M (2010) What is it with the weather and stroke? Expert Rev Neurother 10(2):243–249. doi: 10.1586/ern.09.154 CrossRefGoogle Scholar
  38. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997. doi: 10.1126/science.1098704 CrossRefGoogle Scholar
  39. Menvielle M, Berthelier A (1991) The K-derived planetary indices: description and availability. Rev Geophys 29:415–432. doi: 10.1029/91RG00994 CrossRefGoogle Scholar
  40. Messner T, Lundberg V, Wikstrom B (2002) A temperature rise is associated with an increase in the number of acute myocardial infarctions in the subarctic area. Int J Circumpolar Health 61:201–207CrossRefGoogle Scholar
  41. Morabito M, Crisci A, Orlandini S, Maracchi G, Gensini GF, Modesti PA (2008) A synoptic approach to weather conditions discloses a relationship with ambulatory blood pressure in hypertensives. Am J Hypertens 21:748–752. doi: 10.1038/ajh.2008.177 CrossRefGoogle Scholar
  42. Morabito M, Crisci A, Vallorani R, Modesti PA, Gensini GF, Orlandini S (2011) Innovative approaches helpful to enhance knowledge on weather-related stroke events over a wide geographical area and a large population. Stroke 42:593–600. doi: 10.1161/STROKEAHA.110.602037 CrossRefGoogle Scholar
  43. NOAA (US National Oceanic and Atmospheric Administration) (2005) Space weather scales. Accessed 20 February 2013
  44. Oinuma S, Kubo Y, Otsuka K, Yamanaka T, Murakami S, Matsuoka O et al (2002) Graded response of heart rate variability, associated with an alteration of geomagnetic activity in a subarctic area. Biomed Pharmacother 56:284s–288sCrossRefGoogle Scholar
  45. Otsuka K, Oinuma S, Cornelissen G, Weydahl A, Ichimary Y, Kobayashi M et al (2001a) Alternating light-darkness-influenced human electrocardiographic magnetoreception in association with geomagnetic pulsations. Biomed Pharmacother 55:63–75. doi: 10.1016/S0753-3322(01)90007-1 CrossRefGoogle Scholar
  46. Otsuka K, Cornelissen G, Weydahl A, Holmeslet B, Hansen TL, Shinagawa M et al (2001b) Geomagnetic disturbance associated with decrease in heart rate variability in a subarctic area. Biomed Pharmacother 55(Suppl 1):51–56. doi: 10.1016/S0753-3322(01)90005-8 Google Scholar
  47. Palmer S, Rycroft M, Cermack M (2006) Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv Geophys 27:557–595. doi: 10.1007/s10712-006-9010-7 CrossRefGoogle Scholar
  48. Pikin DA, Gurfinkel YI, Oraevskii VN (1998) Effect of geomagnetic disturbances on the blood coagulation system in patients with ischemic heart disease and prospects for correction with medication. Biofizika 43:617–622 (in Russian)Google Scholar
  49. RIA (Russian Information Agency) (2010) Press conference of head physician of Moscow first-aid station of 06.08.2010. Accessed 20 February 2013 (in Russian)
  50. Rostoker G, Sharma RP (1980) Correlation of high latitude tropospheric pressure with the structure of the interplanetary magnetic field. Can J Phys 58:255–269CrossRefGoogle Scholar
  51. Shindell D, Rind D, Balachandran N, Leon J, Lonergan P (1999) Solar cycle variability, ozone, and climate. Science 284:304–308. doi: 10.1126/science.284.5412.305 CrossRefGoogle Scholar
  52. Siebert M, Meyer J (1996) Geomagnetic activity indices. In: Dieminger W et al (eds) The upper atmosphere. Springer, Berlin, pp 887–911Google Scholar
  53. Stoupel E, Keret R, Assa S, Kaufman H, Shimshoni M, Laron Z (1983) Secretion of growth hormone, prolactin and corticosteroids during different levels of geomagnetic activity. Neuroendocrinol Lett 5:365–368Google Scholar
  54. Stoupel E, Martfel JN, Rotenberg Z (1994) Paroxysmal atrial fibrillation and stroke (cerebrovascular accidents) in males and females above and below age 65 on days of different geomagnetic activity levels. J Basic Clin Physiol Pharmacol 5:315–329. doi: 10.1515/JBCPP.1994.5.3-4.315 CrossRefGoogle Scholar
  55. Stoupel E, Wittenberg C, Zabludowski J, Boner G (1995a) Ambulatory blood pressure monitoring in patients with hypertension on days of high and low geomagnetic activity. J Human Hypertens 9:293–294Google Scholar
  56. Stoupel E, Abramson E, Sulkes J, Martfel J, Stein N, Handelman M et al (1995b) Relationship between suicide and myocardial infarction with regard to changing physical environmental conditions. Int J Biometerol 38:199–203. doi: 10.1007/BF01245389 CrossRefGoogle Scholar
  57. Sung FC, Huang LY, Huang YL, Wang YC (2011) Population-based study on risk of stroke associated with temperature change. Abstracts of the 23th ISEE conference. Accessed 20 February 2013
  58. Tofler GH, Brezinski D, Schafer AI, Czeisler CA, Rutherford JD, Willich SN, Gleason RE, Williams GH, Muller JE (1987) Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med 316:1514–1518CrossRefGoogle Scholar
  59. Vlak MHM, Rinkel GJE, Greebe P, Van Der Bom JG, Algra A (2011) Trigger factors and their attributable risk for rupture of intracranial aneurysms: a case-crossover study. Stroke 42:1878–1882. doi: 10.1161/STROKEAHA.110.606558 CrossRefGoogle Scholar
  60. Wang XY, Barnett AG, Hu W, Tong S (2009) Temperature variation and emergency hospital admissions for stroke in Brisbane, Australia, 1996–2005. Int J Biometeorol 53:535–541. doi: 10.1007/s00484-009-0241-4 CrossRefGoogle Scholar
  61. Watanabe Y, Hillman DC, Otsuka K, Bingham C, Breus TK, Comtlissen G et al (1994) Cross-spectral coherence between geomagnetic disturbance and human cardiovascular variables at nonsocietal frequencies. Chronobiologia 21:265–272Google Scholar
  62. Watanabe Y, Cornelissen G, Halberg F, Otsuka K, Ohkawa SI (2000) Associations by signatures and coherences between the human circulation and helio- and geomagnetic activity. Biomed Pharmacother 55(Suppl 1):s76–s83. doi: 10.1016/S0753-3322(01)90008-3 CrossRefGoogle Scholar
  63. Wichmann J, Ketzel M, Ellermann T, Loft S (2012) Apparent temperature and acute myocardial infarction hospital admissions in Copenhagen, Denmark: a case-crossover study. Environ Health 11:19. doi: 10.1186/1476-069X-11-19 CrossRefGoogle Scholar
  64. Willich SN (1999) Circadian variation and triggering of cardiovascular events. Vasc Med 4(1):41–49. doi: 10.1177/1358836X9900400108 CrossRefGoogle Scholar
  65. Wolf K, Schneider A, Breitner S, von Klot S, Meisinger C, Cyrys J, Hymer H, Wichmann HE, Peters A (2009) Air temperature and the occurrence of myocardial infarction in Augsburg, Germany. Circulation 120(9):735–742. doi: 10.1161/CIRCULATIONAHA.108.815860 CrossRefGoogle Scholar

Copyright information

© ISB 2013

Authors and Affiliations

  • Dmitry Shaposhnikov
    • 1
    • 4
    Email author
  • Boris Revich
    • 1
  • Yuri Gurfinkel
    • 2
  • Elena Naumova
    • 3
  1. 1.Environmental Health Laboratory, Institute of ForecastingRussian Academy of SciencesMoscowRussian Federation
  2. 2.Central Hospital of Joint-Stock Company Russian RailwaysMoscowRussian Federation
  3. 3.Tufts University School of MedicineBostonUSA
  4. 4.Institute of ForecastingMoscowRussia

Personalised recommendations