Advertisement

Der Schmerz

, Volume 32, Issue 2, pp 99–104 | Cite as

Lumbale CT-gezielte Radiofrequenzablationen des Ramus medialis rami dorsalis nervi spinalis

Anatomische Untersuchung und Beschreibung einer neuen Technik
  • G. C. Feigl
  • C. Mattersberger
  • W. Rosmarin
  • R. Likar
  • C. Avila González
Originalien
  • 195 Downloads

Zusammenfassung

Hintergrund

Der Erfolg einer Radiofrequenzablation (RF) des Ramus medialis rami dorsalis lumbalis bei Schmerzen aufgrund von Facettengelenksarthropathien ist abhängig von der effektiven Koagulationsstrecke. Bisherige Computertomographie(CT)-gesteuerte Techniken erreichen den Zielnerv nicht parallel, sondern nur punktuell. Wir beschreiben eine neue CT-gezielte Punktionstechnik, um die Parallelität und Nähe der RF-Thermoläsionsnadel zum Nerv zu verbessern.

Material und Methoden

Zwei Untersucher mit unterschiedlicher Punktionserfahrung mit Bildgebung führten an 10 Leichen die Untersuchung auf je einer Leichenseite durch. Eine RF-Thermoläsionsnadel wurde 1 cm lateral des Processus spinosus des nächsten kaudal liegenden Wirbels in Bezug auf den zu erreichenden Zielnerv eingestochen. Die Nadel wurde in einem flachen Winkel CT-gesteuert zwischen Processus articularis superior und Basis des Processus costalis des kranial gelegenen Wirbels positioniert und die Nadelposition durch Dissektion verifiziert. Als „erfolgreich durchgeführt“ wurde definiert, wenn die Nadel mit maximal einem Korrekturversuch in der Zielposition platziert werden konnte.

Ergebnisse

Von 100 möglichen Punktionen (50 pro Seite) an den 5 lumbalen Segmenten konnten die RF-Nadeln nach maximal einer Nadelkorrektur in 86 Fällen CT-morphologisch im Zielgebiet dargestellt werden. Die anatomischen Dissektionen zeigten, dass 47 von 86 positionierten RF-Nadeln (54,6 %) die Anforderung einer maximalen Parallelität und Nähe zum Nerv erfüllten. Der Ramus dorsalis der lumbalen Spinalnerven wurde in keinem Fall mit der RF-Nadel erreicht. Am niedrigsten war die Erfolgsrate in den Übergangssegmenten L1-L2 und L5-S1.

Diskussion

Mittels der hier beschriebenen Technik wird das Prinzip der Parallelität und Nähe der Nadelpositionierung zum Nerv erfüllt. Die Nadelpositionierung erfordert aufgrund der schrägen Punktionsrichtung Übung.

Schlüsselwörter

Facettengelenksschmerz Radiofrequenzablation Thermokoagulation Lumbale Facettengelenksdenervation Lumbaler Ramus medialis 

Lumbar CT-guided radiofrequency ablation of the medial branch of the dorsal ramus of the spinal nerve

Anatomic study and description of a new technique

Abstract

Background

The success of radiofrequency ablation (RF) of the medial branch of the dorsal ramus in patients with facet joint pain depends on the effective coagulation distance. To date, computed tomography(CT)-guided techniques do not reach the nerve in parallel but rather than punctually. We report a new CT-guided technique to enhance parallelism and proximity of the RF needle to the nerve.

Materials and methods

Two examiners with different experience with CT-guided procedures in corpses performed all punctures at the lumbar spine on 10 corpses. A RF needle was inserted 1 cm lateral to the spinous process of the vertebra located caudal to the target nerve. The needle was advanced under CT guidance at a flat angle between the superior articular process and the base of the costal or transverse process of the cranial vertebra. The position was verified by dissection. Needle position was judged successful provided the needle could be positioned in the first attempt with no more than one angle correction.

Results

In 86 out of 100 possible cases (50 per side) at the 5 lumbar segments, the RF needle could be depicted by CT in the target area with no more than one correction of the needle position. Anatomical dissections revealed that 47 out of 86 needles (54.6%) fulfilled the requirements of parallelism and proximity to the nerve. The dorsal ramus was never reached by the RF needle. Higher success rates were obtained in the middle segments compared to the border segments of L1–L2 and L5–S1.

Conclusions

We could demonstrate that the principle of parallelism and proximity of the needle to the nerve could be fulfilled with this new technique; however, needle positioning requires practice due to the oblique puncture direction.

Keywords

Facet joint pain Radiofrequency ablation Radiofrequency denervation Thermocoagulation Medial branch 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

G.C. Feigl, C. Mattersberger, W. Rosmarin, R. Likar und C. Avila González geben an, dass kein Interessenkonflikt besteht.

Die Untersuchung fand nach den ethischen Kriterien statt.

Literatur

  1. 1.
    Amrhein TJ, Joshi AB, Kranz PG (2016) Technique for CT fluoroscopy-guided lumbar medial branch blocks and radiofrequency ablation. AJR Am J Roentgenol 207:631–634CrossRefPubMedGoogle Scholar
  2. 2.
    Arnolli MM, Buijze M, Franken M, de Jong KP, Brouwer DM, Broeders I (2018) System for CT-guided needle placement in the thorax and abdomen: a design for clinical acceptability, applicability and usability. Int J Med Rob Comput Assist Surg.  https://doi.org/10.1002/rcs.1877 Google Scholar
  3. 3.
    Benkhadra M, Faust A, Ladoire S, Trost O, Trouilloud P, Girard C, Anderhuber F, Feigl G (2009) Comparison of fresh and Thiel’s embalmed cadavers according to the suitability for ultrasound-guided regional anesthesia of the cervical region. Surg Radiol Anat 31:531–535CrossRefPubMedGoogle Scholar
  4. 4.
    Bogduk N, Wilson AS, Tynan W (1982) The human lumbar dorsal rami. J Anat 134:383–397PubMedPubMedCentralGoogle Scholar
  5. 5.
    Brenner DJ, Hall EJ (2007) Current concepts – computed tomography – an increasing source of radiation exposure. N Engl J Med 357:2277–2284CrossRefPubMedGoogle Scholar
  6. 6.
    Cosman ER, Dolensky JR, Hoffman RA (2014) Factors that affect radiofrequency heat lesion size. Pain Med 15:2020–2036CrossRefPubMedGoogle Scholar
  7. 7.
    Dreyfuss P, Halbrook B, Pauza K, Joshi A (2000) Efficacy and validity of radiofrequency neurotomy for chronic lumbar zygapophysial joint pain. Spine 25:1270–1277CrossRefPubMedGoogle Scholar
  8. 8.
    Feigl G, Anderhuber F, Schwarz G, Dorn C, Fasel JHD, Likar R (2007) Training methods for regional anaesthesia – evaluation and comparison. Anaesthesist 56:437–443CrossRefPubMedGoogle Scholar
  9. 9.
    Feigl GC, Dreu M, Kastner M, Rosmarin W, Kniesel B, Likar R (2017) Thermocoagulation of the medial branch of the dorsal branch of the lumbal spinal nerve: flouroscopy versus CT. Pain Med 18:36–40CrossRefPubMedGoogle Scholar
  10. 10.
    Fritz J, Clasen S, Boss A, Thomas C, Konig CW, Claussen CD, Pereira PL (2008) Real-time MR fluoroscopy-navigated lumbar facet joint injections: feasibility and technical properties. Eur Radiol 18:1513–1518CrossRefPubMedGoogle Scholar
  11. 11.
    Greher M, Moriggl B, Peng PWH, Minella CE, Zacchino M, Eichenberger U (2015) Ultrasound-guided approach for L5 dorsal ramus block and fluoroscopic evaluation in unpreselected cadavers. Reg Anesth Pain Med 40:713–717CrossRefPubMedGoogle Scholar
  12. 12.
    Han SH, Park KD, Cho KR, Park Y (2017) Ultrasound versus fluoroscopy-guided medial branch block for the treatment of lower lumbar facet joint pain: a retrospective comparative study. Medicine (Baltimore) 96(16):e6655.  https://doi.org/10.1097/MD.0000000000006655 CrossRefGoogle Scholar
  13. 13.
    International Spine Intervention S, Bogduk N (2014) ISIS practice guidelines for spinal diagnostic and treatment procedures, 2. Aufl. International Spine Intervention Society, HinsdaleGoogle Scholar
  14. 14.
    Joswig H, Haile SR, Hildebrandt G, Stienen MN (2017) Residents’ learning curve of lumbar transforaminal epidural steroid injections. J Neurol Surg A Cent Eur Neurosurg 78:460–466CrossRefPubMedGoogle Scholar
  15. 15.
    Juch JNS, Maas ET, Ostelo RJG, Groeneweg JG, Kallewaard JW, Koes B, Verhagen AP, van Dongen JM, Huygen F, van Tulder M (2017) Effect of radiofrequency denervation on pain intensity among patients with chronic low back pain the mint randomized clinical trials. JAMA 318:68–81CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    van Kleef M, Barendse GAM, Kessels A, Voets HM, Weber WEJ, de Lange S (1999) Randomized trial of radiofrequency lumbar facet denervation for chronic low back pain. Spine 24:1937–1942CrossRefPubMedGoogle Scholar
  17. 17.
    Koizuka S, Saito S, Kawauchi C, Takizawa D, Goto F (2005) Percutaneous radiofrequency lumbar facet rhizotomy guided by computed tomography fluoroscopy. J Anesth 19(2):167–169CrossRefPubMedGoogle Scholar
  18. 18.
    Lanz T, Wachsmuth W, Rickenbacher J, Landot A, Theiler K, Scheier H, Siegfried F, Wagenhäuser F (1982) Praktische Anatomie. Rücken. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  19. 19.
    Leclaire R, Fortin L, Lambert R, Bergeron YM, Rossignol M (2001) Radiofrequency facet joint denervation in the treatment of low back pain – a placebo-controlled clinical trial to assess efficacy. Spine 26:1411–1416CrossRefPubMedGoogle Scholar
  20. 20.
    Mahato NK (2014) Mamillo-accessory notch and foramen: distribution patterns and correlation with superior lumbar facet structure. Morphologie 98:176–181CrossRefPubMedGoogle Scholar
  21. 21.
    Maino P, Presilla S, Colli Franzone PA, van Kuijk SMJ, Perez R, Koetsier E (2017) Radiation dose exposure for lumbar transforaminal epidural steroid injections and facet joint blocks under CT versus fluoroscopic guidance. Pain Pract.  https://doi.org/10.1111/papr.12677 PubMedGoogle Scholar
  22. 22.
    Masini M, Paiva WS, Araujo AS Jr. (2005) Anatomical description of the facet joint innervation and its implication in the treatment of recurrent back pain. J Neurosurg Sci 49:143–146 (discussion 146)PubMedGoogle Scholar
  23. 23.
    Park CH (2010) Comprasion of effectiveness of CT vs C‑arm guided percutaneous radiofrequency lumbar facet rhizotomy. Korean J Pain 23:137–141CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Pedersen HE, Blunck CEJ, Gardner E (1956) The anatomy of the lumbosacral posterior rami and meningeal branches of spinal nerves (sinu-vertebral nerves), with an experimental study of their functions. J Bone Joint Surg Am 38:240–240CrossRefGoogle Scholar
  25. 25.
    Sabnis AB, Chamoli U, Diwan AD (2017) Is L5-S1 motion segment different from the rest? A radiographic kinematic assessment of 72 patients with chronic low back pain. Eur Spine J.  https://doi.org/10.1007/s00586-017-5400-4 PubMedGoogle Scholar
  26. 26.
    Shealy CN (1975) Percutaneous radiofrequency denervation of spinal facets. Treatment for chronic back pain and sciatica. J Neurosurg 43:448–451CrossRefPubMedGoogle Scholar
  27. 27.
    Staender M, Maerz U, Tonn JC, Steude U (2005) Computerized tomography-guided kryorhizotomy in 76 patients with lumbar facet joint syndrome. J Neurosurg Spine 3:444–449CrossRefPubMedGoogle Scholar
  28. 28.
    Thiel W (2002) Ergänzung für die Konservierung ganzer Leichen nach W. Thiel. Ann Anat 184:267–269CrossRefPubMedGoogle Scholar
  29. 29.
    Weininger M, Mills JC, Rumboldt Z, Bonaldi G, Huda W, Cianfoni A (2013) Accuracy of CT guidance of lumbar facet joint block. AJR Am J Roentgenol 200:673–676CrossRefPubMedGoogle Scholar
  30. 30.
    Yiasemidou M, Roberts D, Glassman D, Tomlinson J, Biyani S, Miskovic D (2017) A multispecialty evaluation of Thiel cadavers for surgical training. World J Surg 41:1201–1207CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Deutsche Schmerzgesellschaft e.V. Published by Springer Medizin Verlag GmbH, ein Teil von Springer Nature - all rights reserved 2018

Authors and Affiliations

  • G. C. Feigl
    • 1
  • C. Mattersberger
    • 1
  • W. Rosmarin
    • 1
  • R. Likar
    • 2
  • C. Avila González
    • 3
  1. 1.Institut für makroskopische und klinische AnatomieMedizinische Universität GrazGrazÖsterreich
  2. 2.Abteilung für Anästhesie und IntensivmedizinLKH KlagenfurtKlagenfurtÖsterreich
  3. 3.Klinik für Anästhesiologie, Intensiv‑, Palliativ- und SchmerzmedizinBerufsgenossenschaftliches Universitätsklinikum BergmannsheilBochumDeutschland

Personalised recommendations