Skip to main content

Advertisement

Log in

On the use of observations in assessment of multi-model climate ensemble

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

The Bayesian weighted averaging (BWA) method is commonly used to integrate over multi-model ensembles of climate series. This method relies on two criteria to assign weights to individual outputs: model skill in reproducing historical observations, and inter-model agreement in simulating future period. Observations are generally thought to be relevant for correcting biases in model outputs in the BWA framework. However, they concurrently may introduce unpredictable impacts in the context of the downscaling process, in particular, when model output on precipitation is of interest. Specifically, the posterior distribution may excessively depend on few ‘outlier models’ being close to the observation, when all other models fail to capture observation of the historical period—a common situation for precipitation metrics. Another issue emerges for climates with very dry months: the inclusion of observation in BWA may result in a significant spread of the posterior distribution into the negative region. To address these problems, a modified version of the BWA method that removes observations in the initial phase of downscaling (computation of Factors of Change) and adds them in the estimation of posterior distributions is explored in this work. Comparisons of simulation results for the locations of Miami (FL), Fresno (CA), and Flint (MI) between the modified BWA and the traditional BWA demonstrate consistent outcomes with regards to the effect of observation in the Bayesian framework. Further, the modified BWA approach generally reduces uncertainty, as compared to ‘simple averaging’ in the Bayesian context, which assigns equal weights to all model outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abramowitz G (2010) Model independence in multi-model ensemble prediction. Aust Meteorol Oceanogr J 59:3–6

    Google Scholar 

  • Akhtar M, Ahmad N, Booij MJ (2008) The impact of climate change on the water resources of Hindukush-Karakorum-Himalaya region under different glacier coverage scenarios. J Hydrol 355(1–4):148–163

    Google Scholar 

  • Allan RP, Liu CL, Zahn M, Lavers DA, Koukouvagias E, Bodas-Salcedo A (2014) Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv Geophys 35(3):533–552

    Google Scholar 

  • Anandhi A, Frei A, Pierson DC, Schneiderman EM, Zion MS, Lounsbury D, Matonse AH (2011) Examination of change factor methodologies for climate change impact assessment. Water Resour Res. https://doi.org/10.1029/2010WR009104

    Article  Google Scholar 

  • Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevag A, Seland O, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjansson JE (2013) The Norwegian Earth System Model, NorESM1-M-Part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6(3):687–720

    Google Scholar 

  • Bi DH, Dix M, Marsland SJ, O’Farrell S, Rashid HA, Uotila P, Hirst AC, Kowalczyk E, Golebiewski M, Sullivan A, Yan HL, Hannah N, Franklin C, Sun ZA, Vohralik P, Watterson I, Zhou XB, Fiedler R, Collier M, Ma YM, Noonan J, Stevens L, Uhe P, Zhu HY, Griffies SM, Hill R, Harris C, Puri K (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63(1):41–64

    Google Scholar 

  • Bishop CH, Abramowitz G (2013) Climate model dependence and the replicate Earth paradigm. Clim Dyn 41(3–4):885–900

    Google Scholar 

  • Burlando P, Rosso R (2002) Effects of transient climate change on basin hydrology. 1. Precipitation scenarios for the Arno River, central Italy. Hydrol Process 16(6):1151–1175

    Google Scholar 

  • Castro CL, Pielke RA, Leoncini G (2005) Dynamical downscaling: assessment of value retained and added using the regional atmospheric modeling system (RAMS). J Geophys Res Atmos. https://doi.org/10.1029/2004JD004721

    Article  Google Scholar 

  • Chandler RE (2013) Exploiting strength, discounting weakness: combining information from multiple climate simulators. Philos Trans R Soc A Math Phys Eng Sci 371(1991):20120388

    Google Scholar 

  • Chen J, Brissette FP, Leconte R (2011) Uncertainty of downscaling method in quantifying the impact of climate change on hydrology. J Hydrol 401(3–4):190–202

    Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held R, Jones R, Kolli RK, Kwon WK, Laprise R, Magana Rueda V, Mearns L, Menendez CG, Räisänen J, Rinke A, Sarr A, Whetton P, Arritt R, Benestad R, Beniston M, Bromwich D, Caya D, Comiso J, de Elia R, Dethloff K (2007) Regional climate projections , climate change, 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate Change, Chapter 11. University Press, Cambridge. ISBN: 978-0-521-88009-1

  • Christensen JH, Kjellstrom E, Giorgi F, Lenderink G, Rummukainen M (2010) Weight assignment in regional climate models. Clim Res 44(2–3):179–194

    Google Scholar 

  • Chylek P, Li J, Dubey MK, Wang M, Lesins G (2011) Observed and model simulated 20th century Arctic temperature variability: canadian Earth System Model CanESM2. Atmos Chem Phys Discuss 2011:22893–22907

    Google Scholar 

  • Collins M, Chandler RE, Cox PM, Huthnance JM, Rougier J, Stephenson DB (2012) Quantifying future climate change. Nat Clim Change 2:403

    Google Scholar 

  • Diaz-Nieto J, Wilby RL (2005) A comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames, United Kingdom. Clim Change 69(2–3):245–268

    Google Scholar 

  • Dufresne JL, Foujols MA, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel JP, Ethe C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix JY, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre MP, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSL-CM5 earth system model: from CMIP3 to CMIP5. Clim Dyn 40(9–10):2123–2165

    Google Scholar 

  • Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, Dunne KA, Harrison MJ, Krasting JP, Malyshev SL, Milly PCD, Phillipps PJ, Sentman LT, Samuels BL, Spelman MJ, Winton M, Wittenberg AT, Zadeh N (2012) GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J Clim 25(19):6646–6665

    Google Scholar 

  • Dunne JP, John JG, Shevliakova E, Stouffer RJ, Krasting JP, Malyshev SL, Milly PCD, Sentman LT, Adcroft AJ, Cooke W, Dunne KA, Griffies SM, Hallberg RW, Harrison MJ, Levy H, Wittenberg AT, Phillips PJ, Zadeh N (2013) GFDL’s ESM2 global coupled climate-carbon earth system models Part II: carbon system formulation and baseline simulation characteristics. J Clim 26(7):2247–2267

    Google Scholar 

  • Fatichi S, Ivanov VY, Caporali E (2011) Simulation of future climate scenarios with a weather generator. Adv Water Resour 34(4):448–467

    Google Scholar 

  • Fatichi S, Ivanov VY, Caporali E (2013) Assessment of a stochastic downscaling methodology in generating an ensemble of hourly future climate time series. Clim Dyn 40(7–8):1841–1861

    Google Scholar 

  • Fatichi S, Ivanov VY, Paschalis A, Peleg N, Molnar P, Rimkus S, Kim J, Burlando P, Caporali E (2016) Uncertainty partition challenges the predictability of vital details of climate change. Earths Future 4(5):240–251

    Google Scholar 

  • Fowler HJ, Ekstrom M (2009) Multi-model ensemble estimates of climate change impacts on UK seasonal precipitation extremes. Int J Climatol 29(3):385–416

    Google Scholar 

  • Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27(12):1547–1578

    Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang ZL, Zhang MH (2011) The community climate system model version 4. J Clim 24(19):4973–4991

    Google Scholar 

  • Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Bottinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5(3):572–597

    Google Scholar 

  • Giorgi F, Mearns LO (2002) Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the “reliability ensemble averaging’’ (REA) method. J Clim 15(10):1141–1158

    Google Scholar 

  • Gneiting T, Raftery AE, Westveld AH III, Goldman T (2005) Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon Weather Rev 133(5):1098–1118

    Google Scholar 

  • Hanson RT, Flint LE, Flint AL, Dettinger MD, Faunt CC, Cayan D, Schmid W (2012) A method for physically based model analysis of conjunctive use in response to potential climate changes. Water Resour Res. https://doi.org/10.1029/2011WR010774

    Article  Google Scholar 

  • Haughton N, Abramowitz G, Pitman A, Phipps SJ (2014) On the generation of climate model ensembles. Clim Dyn 43(7–8):2297–2308

    Google Scholar 

  • Haughton N, Abramowitz G, Pitman A, Phipps SJ (2015) Weighting climate model ensembles for mean and variance estimates. Clim Dyn 45(11–12):3169–3181

    Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1108

    Google Scholar 

  • Hay LE, Wilby RJL, Leavesley GH (2000) A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J Am Water Resour Assoc 36(2):387–397

    Google Scholar 

  • Ivanov VY, Bras RL, Curtis DC (2007) A weather generator for hydrological, ecological, and agricultural applications. Water Resour Res. https://doi.org/10.1029/2006WR005364

    Article  Google Scholar 

  • Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana J-F, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14(2):563–578

    Google Scholar 

  • Jeffrey S, Rotstayn L, Collier M, Dravitzki S, Hamalainen C, Moeseneder C, Wong K, Syktus J (2013) Australia’s CMIP5 submission using the CSIRO-Mk3.6 model. Aust Meteorol Oceanogr J 63(1):1–13

    Google Scholar 

  • Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’Connor FM, Andres RJ, Bell C, Boo KO, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR, Hurtt G, Ingram WJ, Lamarque JF, Law RM, Meinshausen M, Osprey S, Palin EJ, Chini LP, Raddatz T, Sanderson MG, Sellar AA, Schurer A, Valdes P, Wood N, Woodward S, Yoshioka M, Zerroukat M (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Dev 4(3):543–570

    Google Scholar 

  • Kang EL, Cressie N, Sain SR (2012) Combining outputs from the North American Regional Climate Change Assessment Program by using a Bayesian hierarchical model. J R Stat Soc Ser C Appl Stat 61:291–313

    Google Scholar 

  • Kilsby CG, Jones PD, Burton A, Ford AC, Fowler HJ, Harpham C, James P, Smith A, Wilby RL (2007) A daily weather generator for use in climate change studies. Environ Model Softw 22(12):1705–1719

    Google Scholar 

  • Kim J, Ivanov VY (2015) A holistic, multi-scale dynamic downscaling framework for climate impact assessments and challenges of addressing finer-scale watershed dynamics. J Hydrol 522:645–660

    Google Scholar 

  • Kim J, Ivanov VY, Fatichi S (2016) Climate change and uncertainty assessment over a hydroclimatic transect of Michigan. Stoch Environ Res Risk Assess 30(3):923–944

    Google Scholar 

  • Knutti R (2010) The end of model democracy? Clim Change 102(3–4):395–404

    Google Scholar 

  • Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23(10):2739–2758

    Google Scholar 

  • Knutti R, Sedlacek J, Sanderson BM, Lorenz R, Fischer EM, Eyring V (2017) A climate model projection weighting scheme accounting for performance and interdependence. Geophys Res Lett 44(4):1909–1918

    Google Scholar 

  • Leith NA, Chandler RE (2010) A framework for interpreting climate model outputs. J R Stat Soc Ser C Appl Stat 59:279–296

    Google Scholar 

  • Li LJ, Lin PF, Yu YQ, Wang B, Zhou TJ, Liu L, Liu JP, Bao Q, Xu SM, Huang WY, Xia K, Pu Y, Dong L, Shen S, Liu YM, Hu N, Liu MM, Sun WQ, Shi XJ, Zheng WP, Wu B, Song MR, Liu HL, Zhang XH, Wu GX, Xue W, Huang XM, Yang GW, Song ZY, Qiao FL (2013) The flexible global ocean-atmosphere-land system model, grid-point version 2: FGOALS-g2. Adv Atmos Sci 30(3):543–560

    Google Scholar 

  • Mahlstein I, Portmann RW, Daniel JS, Solomon S, Knutti R (2012) Perceptible changes in regional precipitation in a future climate. Geophys Res Lett. https://doi.org/10.1029/2011GL050738

    Article  Google Scholar 

  • Mamalakis A, Langousis A, Deidda R, Marrocu M (2017) A parametric approach for simultaneous bias correction and high-resolution downscaling of climate model rainfall. Water Resour Res 53(3):2149–2170

    Google Scholar 

  • Manning LJ, Hall JW, Fowler HJ, Kilsby CG, Tebaldi C (2009) Using probabilistic climate change information from a multimodel ensemble for water resources assessment. Water Resour Res. https://doi.org/10.1029/2007WR006674

    Article  Google Scholar 

  • Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themessl M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user. Rev Geophys. https://doi.org/10.1029/2009RG000314

    Article  Google Scholar 

  • Mearns LO, Sain S, Leung LR, Bukovsky MS, McGinnis S, Biner S, Caya D, Arritt RW, Gutowski W, Takle E, Snyder M, Jones RG, Nunes AMB, Tucker S, Herzmann D, McDaniel L, Sloan L (2013) Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP). Clim Change 120(4):965–975

    Google Scholar 

  • Meehl GA, Covey C, McAvaney B, Latif M, Stouffer RJ (2005) Overview of the coupled model intercomparison project. Bull Am Meteorol Soc 86(1):89–93

    Google Scholar 

  • Meehl GA, Washington WM, Arblaster JM, Hu AX, Teng HY, Kay JE, Gettelman A, Lawrence DM, Sanderson BM, Strand WG (2013) Climate change projections in CESM1(CAM5) compared to CCSM4. J Clim 26(17):6287–6308

    Google Scholar 

  • Nunes JP, Seixas J, Keizer JJ (2013) Modeling the response of within-storm runoff and erosion dynamics to climate change in two Mediterranean watersheds: a multi-model, multi-scale approach to scenario design and analysis. catena 102:27–39

    Google Scholar 

  • Olson R, Fan YA, Evans JP (2016) A simple method for Bayesian model averaging of regional climate model projections: application to southeast Australian temperatures. Geophys Res Lett 43(14):7661–7669

    Google Scholar 

  • Onyutha C, Tabari H, Rutkowska A, Nyeko-Ogiramoi P, Willems P (2016) Comparison of different statistical downscaling methods for climate change rainfall projections over the Lake Victoria basin considering CMIP3 and CMIP5. J Hydro Environ Res 12:31–45

    Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen–Geiger climate classification. Hydrol Earth Syst Sci 11(5):1633–1644

    Google Scholar 

  • Peleg N, Fatichi S, Paschalis A, Molnar P, Burlando P (2017) An advanced stochastic weather generator for simulating 2-D high-resolution climate variables. J Adv Model Earth Syst 9(3):1595–1627

    Google Scholar 

  • Piani C, Haerter JO, Coppola E (2010) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99(1–2):187–192

    Google Scholar 

  • Raftery AE, Gneiting T, Balabdaoui F, Polakowski M (2005) Using Bayesian model averaging to calibrate forecast ensembles. Mon Weather Rev 133(5):1155–1174

    Google Scholar 

  • Raisanen J (2007) How reliable are climate models? Tellus Ser A Dyn Meteorol Oceanogr 59(1):2–29

    Google Scholar 

  • Safeeq M, Fares A (2012) Hydrologic response of a Hawaiian watershed to future climate change scenarios. Hydrol Process 26(18):2745–2764

    Google Scholar 

  • Schmidli J, Frei C, Vidale PL (2006) Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods. Int J Climatol 26(5):679–689

    Google Scholar 

  • Schoof JT, Pryor SC (2001) Downscaling temperature and precipitation: a comparison of regression-based methods and artificial neural networks. Int J Climatol 21(7):773–790

    Google Scholar 

  • Scoccimarro E, Gualdi S, Bellucci A, Sanna A, Fogli PG, Manzini E, Vichi M, Oddo P, Navarra A (2011) Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model. J Clim 24(16):4368–4384

    Google Scholar 

  • Semenov MA, Stratonovitch P (2010) Use of multi-model ensembles from global climate models for assessment of climate change impacts. Clim Res 41(1):1–14

    Google Scholar 

  • Smith RL, Tebaldi C, Nychka D, Mearns LO (2009) Bayesian modeling of uncertainty in ensembles of climate models. J Am Stat Assoc 104(485):97–116

    CAS  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of Cmip5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498

    Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A Math Phys Eng Sci 365(1857):2053–2075

    Google Scholar 

  • Tebaldi C, Mearns LO, Nychka D, Smith RL (2004) Regional probabilities of precipitation change: a Bayesian analysis of multimodel simulations. Geophys Res Lett. https://doi.org/10.1029/2004GL021276

    Article  Google Scholar 

  • Tebaldi C, Smith RL, Nychka D, Mearns LO (2005) Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multimodel ensembles. J Clim 18(10):1524–1540

    Google Scholar 

  • Themessl MJ, Gobiet A, Leuprecht A (2011) Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int J Climatol 31(10):1530–1544

    Google Scholar 

  • Tyralis H, Koutsoyiannis D (2017) On the prediction of persistent processes using the output of deterministic models. Hydrol Sci J 62(13):2083–2102

    Google Scholar 

  • Voldoire A, Sanchez-Gomez E, Melia DSY, Decharme B, Cassou C, Senesi S, Valcke S, Beau I, Alias A, Chevallier M, Deque M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5,1 global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121

    Google Scholar 

  • Volodin EM, Dianskii NA, Gusev AV (2010) Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izv Atmos Ocean Phys 46(4):414–431

    Google Scholar 

  • von Storch H, Hewitson B, Mearns L (2000) Review of empirical downscaling techniques. Regional climate development under global warming. General technical report 4

  • Wang B, Yang HW (2008) Hydrological issues in lateral boundary conditions for regional climate modeling: simulation of east asian summer monsoon in 1998. Clim Dyn 31(4):477–490

    Google Scholar 

  • Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5. Mean states, variability, and climate sensitivity. J Clim 23(23):6312–6335

    Google Scholar 

  • Wei T, Yang S, Moore JC, Shi P, Cui X, Duan Q, Xu B, Dai Y, Yuan W, Wei X, Yang Z, Wen T, Teng F, Gao Y, Chou J, Yan X, Wei Z, Guo Y, Jiang Y, Gao X, Wang K, Zheng X, Ren F, Lv S, Yu Y, Liu B, Luo Y, Li W, Ji D, Feng J, Wu Q, Cheng H, He J, Fu C, Ye D, Xu G, Dong W (2012) Developed and developing world responsibilities for historical climate change and CO2 mitigation. Proc Natl Acad Sci 109(32):12911–12915

    CAS  Google Scholar 

  • Weigel AP, Knutti R, Liniger MA, Appenzeller C (2010) Risks of model weighting in multimodel climate projections. J Clim 23(15):4175–4191

    Google Scholar 

  • Widmann M, Bretherton CS, Salathe EP (2003) Statistical precipitation downscaling over the Northwestern United States using numerically simulated precipitation as a predictor. J Clim 16(5):799–816

    Google Scholar 

  • Wilby RL, Wigley TML, Conway D, Jones PD, Hewitson BC, Main J, Wilks DS (1998) Statistical downscaling of general circulation model output: a comparison of methods. Water Resour Res 34(11):2995–3008

    Google Scholar 

  • Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62(1–3):189–216

    Google Scholar 

  • Wu TW (2012) A mass-flux cumulus parameterization scheme for large-scale models: description and test with observations. Clim Dyn 38(3–4):725–744

    Google Scholar 

  • Yang HW, Wang B, Wang B (2012a) Reducing biases in regional climate downscaling by applying Bayesian model averaging on large-scale forcing. Clim Dyn 39(9–10):2523–2532

    Google Scholar 

  • Yang HW, Wang B, Wang B (2012b) Reduction of systematic biases in regional climate downscaling through ensemble forcing. Clim Dyn 38(3–4):655–665

    Google Scholar 

  • Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M, Mizuta R, Yabu S, Obata A, Nakano H, Koshiro T, Ose T, Kitoh A (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3-model description and basic performance. J Meteorol Soc Jpn 90a:23–64

    Google Scholar 

  • Zorita E, von Storch H (1999) The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J Clim 12(8):2474–2489

    Google Scholar 

Download references

Acknowledgements

This study was supported by the NSF Grant EAR 1151443. Jongho Kim was supported by a Grant (18AWMP-B127554-02) from the Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government. We acknowledge the modeling groups listed in Table 1, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for making the CMIP5 multi-model dataset available. We also thank the Office of Support, U.S. Department of Energy for providing the support of this dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy Y. Ivanov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10823 kb)

Appendix

Appendix

The BWA framework of Tebaldi et al. (2005) relies on several statistical variables, which are defined in the following:

\(X_{i}\) and \(Y_{i}\) represent model output of climate variables (e.g., mean monthly precipitation or temperature) for the CTL and FUT periods respectively, which are assumed to follow Normal distribution.

$$X_{i} \sim N\left( {\mu ,\lambda_{i}^{ - 1} } \right),Y_{i} \sim N\left( {\nu ,(\theta \lambda_{i} )^{ - 1} } \right),$$
(3)

The parameters \(\mu\) and \(\upsilon\) are the corresponding the true values for the past and future, which are common for all GCMs. These two parameters have uniform prior density on the true values. The \(\lambda_{i}\) is a “precision” parameter for each model i = 1…N = 18, a reciprocal of the variance of the climate variable, which is used as a model-specific weight in the Markov Chain Monte Carlo (MCMC) simulation, when outputs are combined to estimate the posterior distribution for a variable of interest. The weight related parameters have Gamma prior densities (e.g., Ga(a, b)). The values of a and b are set to be 0.01 to make sure the prior distributions for \(\lambda_{i}\) are diffuse/non-informative (Tebaldi et al. 2004). Parameter \(\lambda_{0}\) represents a measure of natural variability for the climate variable of interest, it introduces a weight for observation in the MCMC simulation. The \(\theta\) is the parameter that allows GCMs to have different precisions, when simulating future climate conditions, as compared to the historic period. \(\beta\) introduces a regression parameter between the model outputs representing past and future (Eq. 11 of Tebaldi et al. 2005). The process of estimation of the posterior distributions is facilitated by the MCMC simulation, as the joint posterior distribution cannot be treated analytically (Tebaldi et al. 2005). The distributions of each parameter with remaining parameters fixed are derived in Tebaldi et al. (2005) and are summarized here:

$$\lambda_{i} | \cdots \sim Ga\left( {a + 1,b + \frac{{(X_{i} - \mu )^{2} + \theta [Y_{i} - \nu - \beta (X - \mu )]^{2} }}{2}} \right),$$
(4)
$$\mu | \cdots \sim N\left( {\tilde{\mu },\left( {\sum\limits_{i = 1}^{18} {\lambda_{i} + \theta \beta^{2} \sum\limits_{i = 1}^{18} {\lambda_{i} + \lambda_{0} } } } \right)^{ - 1} } \right),$$
(5)
$$\nu | \cdots \sim N\left( {\tilde{\nu },\left( {\theta \sum\limits_{i = 1}^{18} {\lambda_{i} } } \right)^{ - 1} } \right),$$
(6)
$$\beta | \cdots \sim N\left( {\tilde{\beta },\left[ {\theta \sum\limits_{i = 1}^{18} {\lambda_{i} (X_{i} - \mu )^{2} } } \right]^{ - 1} } \right),$$
(7)

And \(\tilde{\mu },\;\tilde{\nu },\;\tilde{\beta }\) are computed as:

$$\tilde{\mu } = \frac{{\sum\nolimits_{i = 1}^{18} {\lambda_{i} X_{i} - \theta \beta_{x} \sum\nolimits_{i = 1}^{18} {\lambda_{i} (Y_{i} - \nu - \beta_{x} X_{i} ) + \lambda_{0} X_{0} } } }}{{\sum\nolimits_{i = 1}^{18} {\lambda_{i} + \theta \beta_{x}^{2} \sum\nolimits_{i = 1}^{18} {\lambda_{i} + \lambda_{0} } } }},$$
(8)
$$\tilde{\nu } = \frac{{\sum\nolimits_{i = 1}^{18} {\lambda_{i} \{ Y_{i} - \beta_{x} (X_{i} - \mu )\} } }}{{\sum\nolimits_{i = 1}^{18} {\lambda_{i} } }},$$
(9)
$$\tilde{\beta } = \frac{{\sum\nolimits_{i = 1}^{18} {\lambda_{i} (Y_{i} - \nu )(X_{i} - \mu )} }}{{\sum\nolimits_{i = 1}^{18} {\lambda_{i} (X_{i} - \mu )^{2} } }}.$$
(10)

In the above equations, i = 1…N = 18, where 18 represents the number of model outputs used in this study.

Of particular interest are the parameters \(\lambda_{i}\) that are effectively used as weights for individual model outputs. The posterior distribution of the parameter \(\lambda_{i}\) is based on the performance of the corresponding GCM model: its bias \((X_{i} - \tilde{\mu })^{2}\), i.e., the deviation of modeled past period from observations, and convergence \((Y_{i} - \tilde{\upsilon })^{2}\), i.e., a penalty if the modeled future/projected climate variable lies far from the center of model ensemble cluster. To remove the effect of observation in the current BWA framework, we can set \(\lambda_{0} = 0\). This modification leads to the change of estimate of \(\mu\) with all the other parameters remaining the same:

$$\mu | \cdots \sim N\left( {\tilde{\mu },\left( {\sum\limits_{i = 1}^{18} {\lambda_{i} + \theta \beta^{2} } \sum\limits_{i = 1}^{18} {\lambda_{i} } } \right)^{ - 1} } \right),$$
(11)
$$\tilde{\mu } = \frac{{\sum\nolimits_{i = 1}^{18} {\lambda_{i} X_{i} - \theta \beta_{x} } \sum\nolimits_{i = 1}^{18} {\lambda_{i} (Y_{i} - \nu - \beta_{x} X_{i} )} }}{{\sum\nolimits_{i = 1}^{18} {\lambda_{i} + \theta \beta_{x}^{2} \sum\nolimits_{i = 1}^{18} {\lambda_{i} } } }}.$$
(12)

Once the samples for posterior distributions are estimated from MCMC process, additive FOC (for temperature) and product FOC (for precipitation) are computed from \(\upsilon - \mu\) and \(\frac{\upsilon }{\mu }\) respectively. The corresponding marginal CDF is constructed using the FOC samples, and FOC PDF is subsequently estimated based on the CDF with the Monte Carlo method.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Ivanov, V.Y., Kim, J. et al. On the use of observations in assessment of multi-model climate ensemble. Stoch Environ Res Risk Assess 33, 1923–1937 (2019). https://doi.org/10.1007/s00477-018-1621-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-018-1621-2

Keywords

Navigation