Skip to main content
Log in

Spatial disaggregation of ASCAT soil moisture under all sky condition using support vector machine

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

With recent advances in downscaling methodologies, soil moisture (SM) estimation using microwave remote sensing has become feasible for local application. However, disaggregation of SM under all sky conditions remains challenging. This study suggests a new downscaling approach under all sky conditions based on support vector regression (SVR) using microwave and optical/infrared data and geolocation information. Optically derived estimates of land surface temperature and normalized difference vegetation index from MODerate Resolution Imaging Spectroradiometer land and atmosphere products were utilized to obtain a continuous spatio-temporal input datasets to disaggregate SM observation from Advanced SCATterometer in South Korea during 2015 growing season. SVR model was compared to synergistic downscaling approach (SDA), which is based on physical relationship between SM and hydrometeorological factors. Evaluation against in situ observations showed that the SVR model under all sky conditions (R: 0.57 to 0.81, ubRMSE: 0.0292 m3 m−3 to 0.0398 m3 m−3) outperformed coarse ASCAT SM (R: 0.55 to 0.77, ubRMSE: 0.0300 m3 m−3 to 0.0408 m3 m−3) and SDA model (mean R: 0.56 to 0.78, ubRMSE: 0.0324 m3 m−3 to 0.0436 m3 m−3) in terms of statistical results as well as sensitivity with precipitation. This study suggests that the spatial downscaling technique based on remote sensing has the potential to derive high resolution SM regardless of weather conditions without relying on data from other sources. It offers an insight for analyzing hydrological, climate, and agricultural conditions at regional to local scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bisht G, Bras RL (2010) Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study. Remote Sens Environ 114(7):1522–1534

    Article  Google Scholar 

  • Brocca L, Hasenauer S, Lacava T, Melone F, Moramarco T, Wagner W, Dorigo W, Matgen P, Martínez-Fernández J, Llorens P, Latron J, Martin C, Bittelli M (2011) Soil moisture estimation through ASCAT and AMSR-E sensors: an intercomparison and validation study across Europe. Remote Sens Environ 115:3390–3408

    Article  Google Scholar 

  • Brocca L, Ciabatta L, Massari C, Camici S, Tarpanelli A (2017) Soil moisture for hydrological applications: open questions and new opportunities. Water 9(2):140

    Article  Google Scholar 

  • Carlson T (2007) An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors 7(8):1612–1629

    Article  Google Scholar 

  • Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27

    Article  Google Scholar 

  • Chang Q, Chen Q, Wang X (2005) Scaling Gaussian RBF kernel width to improve SVM classification. In: Neural networks and brain, 2005. ICNN&B’05. International Conference on IEEE, vol 1, pp 19–22

  • Chen D, Brutsaert W (1998) Satellite-sensed distribution and spatial patterns of vegetation parameters over a tallgrass prairie. J Atmos Sci 55(7):1225–1238

    Article  Google Scholar 

  • Cho E, Choi M, Wagner W (2015) An assessment of remotely sensed surface and root zone soil moisture through active and passive sensors in northeast Asia. Remote Sens Environ 160:166–179

    Article  Google Scholar 

  • Choi M, Hur Y (2012) A microwave-optical/infrared disaggregation for improving spatial representation of soil moisture using AMSR-E and MODIS products. Remote Sens Environ 124:259–269

    Article  Google Scholar 

  • Choi M, Jacobs JM (2008) Temporal variability corrections for advanced microwave radiometer E (AMSR-E) surface soil moisture: case study in Little River Region, Georgia. US Sensors 8:2617–2627

    Article  Google Scholar 

  • Choi M, Jacobs JM, Anderson MC, Bosch DD (2013) Evaluation of drought indices via remotely sensed data with hydrological variables. J Hydrol 476:265–273

    Article  Google Scholar 

  • Crow WT et al (2012) Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev Geophys 50:2

    Article  Google Scholar 

  • Dalton FN, Herkelrath WN, Rawlins DS, Rhoades JD (1984) Time-domain reflectometry: simultaneous measurement of soil water content and electrical conductivity with a single probe. Science 224(4652):989–990

    Article  CAS  Google Scholar 

  • Deka PC (2014) Support vector machine applications in the field of hydrology: a review. Appl Soft Comput 19:372–386

    Article  Google Scholar 

  • Dorigo W et al (2013) Global automated quality control of in situ soil moisture data from the International Soil Moisture Network. Vadose Zone J 12:3

    Article  Google Scholar 

  • Dorigo W et al (2017) ESA CCI Soil Moisture for improved Earth system understanding: state-of-the art and future directions. Remote Sens Environ 203:185–215

    Article  Google Scholar 

  • Drusch M et al (2005) Observation operators for the direct assimilation of TRMM microwave imager retrieved soil moisture. Geophys Res Lett 32:15

    Article  Google Scholar 

  • Entekhabi D, Njoku EG, O’Neill PE, Kellogg KH, Crow WT, Edelstein WN, Entin JK, Goodman SD, Jackson TJ, Johnson J (2010a) The soil moisture active passive (SMAP) mission. Proc IEEE 98:704–716

    Article  Google Scholar 

  • Entekhabi D, Reichle RH, Koster RD, Crow WT (2010b) Performance metrics for soil moisture retrievals and application requirements. J Hydrometeorol 11(3):832–840

    Article  Google Scholar 

  • Eslamian SS, Gohari SA, Biabanaki M, Malekian R (2008) Estimation of monthly pan evaporation using artificial neural networks and support vector machines. J Appl Sci 8(19):3497–3502

    Article  CAS  Google Scholar 

  • Fang B, Lakshmi V, Bindlish R, Jackson TJ, Cosh M, Basara J (2013) Passive microwave soil moisture downscaling using vegetation index and skin surface temperature. Vadose Zone J 12:3

    Article  Google Scholar 

  • Gao L, Hao L, Chen XW (2014) Evaluation of ERA-interim monthly temperature data over the Tibetan Plateau. J Mt Sci 11(5):1154–1168

    Article  Google Scholar 

  • Geleyn JF, Hollingsworth A (1979) An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Beitr Phys Atmos 52:1–16

    Google Scholar 

  • Gensel J, Josselin D, Vandenbroucke D (2012) Bridging the geographic information sciences. Springer, Berlin

    Book  Google Scholar 

  • Gu Y, Brown JF, Verdin JP, Wardlow B (2007) A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys Res Lett 34:6

    Google Scholar 

  • Guenther B et al (1998) Prelaunch algorithm and data format for the Level 1 calibration products for the EOS-AM1 Moderate Resolution Imaging Spectroradiometer (MODIS). IEEE Trans Geosci Remote Sens 36(4):1142–1151

    Article  Google Scholar 

  • Gunn SR (1998) Support vector machines for classification and regression. ISIS Tech Rep 14(1):5–16

    Google Scholar 

  • Huete A, Jackson R (1988) Soil and atmosphere influences on the spectra of partial canopies. Remote Sens Environ 25:89–105

    Article  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1-2):195–213

    Article  Google Scholar 

  • Hwang K, Choi M, Lee SO, Seo JW (2013) Estimation of instantaneous and daily net radiation from MODIS data under clear sky conditions: a case study in East Asia. Irrig Sci 31(5):1173–1184

    Article  Google Scholar 

  • Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22(4):679–688

    Article  Google Scholar 

  • Jackson TJ (1993) III: Measuring surface soil moisture using passive microwave remote sensing. Hydrol Process 7(2):139–152

    Article  Google Scholar 

  • Jackson TJ, Cosh MH, Bindlish R, Starks PJ, Bosch DD, Seyfried M, Goodrich DC, Moran MS, Jinyang D (2010) Validation of advanced microwave scanning radiometer soil moisture products. IEEE Trans Geosci Remote Sens 48(12):4256–4272

    Article  Google Scholar 

  • Jackson TJ et al (2012) Validation of soil moisture and ocean salinity (SMOS) soil moisture over watershed networks in the US. IEEE Trans Geosci Remote Sens 50(5):1530–1543

    Article  Google Scholar 

  • Kerr YH, Waldteufel P, Wigneron JP, Delwart S, Cabot F, Boutin J (2010) The SMOS mission: new tool for monitoring key elements of the globalwater cycle. Proc IEEE 98(5):666–687

    Article  Google Scholar 

  • Khalil A, Almasri MN, McKee M, Kaluarachchi JJ (2005) Applicability of statistical learning algorithms in groundwater quality modeling. Water Resour Res 41:5

    Google Scholar 

  • Kim H, Choi M (2015) Impact of soil moisture on dust outbreaks in East Asia: using satellite and assimilation data. Geophys Res Lett 42:2789–2796

    Article  Google Scholar 

  • Kim J, Hogue TS (2012) Improving spatial soil moisture representation through integration of AMSR-E and MODIS products. IEEE Trans Geosci Remote Sens 50(2):446–460

    Article  Google Scholar 

  • Kim D, Lee J, Kim H, Choi M (2016) Spatial composition of AMSR2 soil moisture products by conditional merging technique with ground soil moisture data. Stoch Env Res Risk Assess 30(8):2109–2126

    Article  Google Scholar 

  • Kim S, Balakrishnan K, Liu Y, Johnson F, Sharma A (2017) Spatial disaggregation of coarse soil moisture data by using high-resolution remotely sensed vegetation products. IEEE Geosci Remote Sens Lett 14(9):1604–1608

    Article  Google Scholar 

  • King MD, Menzel WP, Kaufman YJ, Tanre D, Gao BC, Platnick S, Ackerman SA, Remer LA, Pincus R, Hubanks PA (2003) Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS. IEEE Trans Geosci Remote Sens 41:442–458

    Article  Google Scholar 

  • Kyoung MS, Kim HS, Sivakumar B, Singh VP, Ahn KS (2011) Dynamic characteristics of monthly rainfall in the Korean Peninsula under climate change. Stoch Env Res Risk Assess 25(4):613–625

    Article  Google Scholar 

  • Lakshmi V (2013) Remote sensing of soil moisture. ISRN Soil Sci 2013(1):1–33

    Article  Google Scholar 

  • Leroux DJ, Kerr YH, Al Bitar A, Bindlish R, Jackson TJ, Berthelot B, Portet G (2013) Comparison between SMOS, VUA, ASCAT, and ECMWF soil moisture products over four watersheds in U.S. IEEE Trans Geosci Remote Sens 52(3):1562–1571

    Article  Google Scholar 

  • Li Q, Li P, Li H, Yu M (2015) Drought assessment using a multivariate drought index in the Luanhe River basin of Northern China. Stoch Env Res Risk Assess 29(6):1509–1520

    Article  Google Scholar 

  • Masuoka E, Fleig A, Wolfe RE, Patt F (1998) Key characteristics of MODIS data products. IEEE Trans Geosci Remote Sens 36(4):1313–1323

    Article  Google Scholar 

  • Merlin O, Al Bitar A, Walker JP, Kerr Y (2010) An improved algorithm for disaggregating microwave-derived soil moisture based on red, near-infrared and thermal-infrared data. Remote Sens Environ 114(10):2305–2316

    Article  Google Scholar 

  • Merlin O, Malbéteau Y, Notfi Y, Bacon S, Khabba SERS, Jarlan L (2015) Performance metrics for soil moisture downscaling methods: application to DISPATCH data in central Morocco. Remote Sens 7(4):3783–3807

    Article  Google Scholar 

  • Mishra AK, Desai VR (2005) Drought forecasting using stochastic models. Stoch Env Res Risk Assess 19(5):326–339

    Article  Google Scholar 

  • Moghaddamnia A, Ghafari M, Piri J, Han D (2009) Evaporation estimation using support vector machines technique. Int J Eng Appl Sci 5(7):415–423

    Google Scholar 

  • Naeimi V, Scipal K, Bartalis Z, Hasenauer S, Wagner W (2009) An improved soil moisture retrieval algorithm for ERS and METOP scatterometer observations. IEEE Trans Geosci Remote Sens 47:1999–2013

    Article  Google Scholar 

  • Njoku EG, Jackson TJ, Lakshmi V, Chan TK, Nghiem SV (2003) Soil moisture retrieval from AMSR- E. IEEE Trans Geosci Remote Sens 41(2):215–229

    Article  Google Scholar 

  • Owe M, de Jeu R, Walker J (2001) A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans Geosci Remote Sens 39(8):1643–1654

    Article  Google Scholar 

  • Paloscia S, Macelloni G, Santi E, Koike T (2001) A multifrequency algorithm for the retrieval of soil moisture on a large scale using microwave data from SMMR and SSM/I satellites. IEEE Trans Geosci Remote Sens 39(8):1655–1661

    Article  Google Scholar 

  • Piles M, Camps A, Vall-Llossera M, Corbella I, Panciera R, Rüdiger C, Walker J (2011) Downscaling SMOS-derived soil moisture using MODIS visible/infrared data. IEEE Trans Geosci Remote Sens 49(9):3156–3166

    Article  Google Scholar 

  • Pozdnoukhov A, Kanevski M (2008) Multi-scale support vector algorithms for hot spot detection and modelling. Stoch Env Res Risk Assess 22(5):647–660

    Article  Google Scholar 

  • PUG Soil Moisture ECV Product User Guide (2016) ESA climate change initiative phase II soil moisture. Accessed 07 Dec 2016

  • Ray RL, Jacobs JM, Cosh MH (2010) Landslide susceptibility mapping using downscaled AMSR-E soil moisture: a case study from Cleveland Corral, California, US. Remote Sens Environ 114(11):2624–2636

    Article  Google Scholar 

  • Robinson DA, Jones SB, Wraith JM, Or D, Friedman SP (2003) A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J 2(4):444–475

    Article  CAS  Google Scholar 

  • Ryu D, Famiglietti JS (2005) Characterization of footprint-scale surface soil moisture variability using Gaussian and beta distribution functions during the Southern Great Plains 1997 (SGP97) hydrology experiment. Water Resour Res 41:12

    Article  Google Scholar 

  • Salomonson VV, Barnes W, Xiong J, Kempler S, Masuoka E (2002) An overview of the earth observing system MODIS instrument and associated data systems performance. In: Geoscience and remote sensing symposium, 2002. IGARSS’02. 2002 IEEE International. IEEE, vol 1, pp 1174–1176

  • Sánchez-Ruiz S, Piles M, Sánchez N, Martínez-Fernández J, Vall-llossera M, Camps A (2014) Combining SMOS with visible and near/shortwave/thermal infrared satellite data for high resolution soil moisture estimates. J Hydrol 516:273–283

    Article  Google Scholar 

  • Sandholt I, Rasmussen K, Andersen J (2002) A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sens Environ 79(2-3):213–224

    Article  Google Scholar 

  • Scholkopf B, Smola AJ (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge

    Google Scholar 

  • Schölkopf B, Smola AJ (2003) A short introduction to learning with kernels. In: Mendelson S, Smola AJ (eds) Advanced lectures on machine learning, vol 1. Springer, Berlin, pp 41–64

    Chapter  Google Scholar 

  • Simmons A, Uppala S, Dee D, Kobayashi S (2007) Update on ERA-interim. ECMWF Newsl 111(5):413

    Google Scholar 

  • Vapnik V (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10(5):988–999

    Article  CAS  Google Scholar 

  • Vapnik V (2013) The nature of statistical learning theory. Springer, Berlin

    Google Scholar 

  • Vapnik V, Kotz S (1982) Estimation of dependences based on empirical data. Springer, New York, p 40

    Google Scholar 

  • Verhoest NE, Lievens H, Wagner W, Álvarez-Mozos J, Moran MS, Mattia F (2008) On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from synthetic aperture radar. Sensors 8(7):4213–4248

    Article  Google Scholar 

  • Vermote EF, El Saleous NZ, Justice CO (2002) Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sens Environ 83(1–2):97–111

    Article  Google Scholar 

  • Viterbo P, Beljaars AC (1995) An improved land surface parameterization scheme in the ECMWF model and its validation. J Clim 8(11):2716–2748

    Article  Google Scholar 

  • Wagner W, Lemoine G, Rott H (1999) A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens Environ 70:191–207

    Article  Google Scholar 

  • Wagner W, Blöschl G, Pampaloni P, Calvet JC, Bizzarri B, Wigneron JP, Kerr Y (2007) Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Hydrol Res 38(1):1–20

    Article  Google Scholar 

  • Wagner W, Dorigo W, de Jeu R, Fernandez D, Benveniste J, Haas E, Ertl M (2012) Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Annals of the Photogrammetry. Remote Sens Spat Inform Sci ISPRS Ann 7:315–321

    Google Scholar 

  • Wan Z, Dozier J (1996) A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans Geosci Remote Sens 34(4):892–905

    Article  Google Scholar 

  • Wan Z, Zhang Y, Zhang Q, Li ZL (2004) Quality assessment and validation of the MODIS global land surface temperature. Int J Remote Sens 25(1):261–274

    Article  Google Scholar 

  • Wang A, Zeng X (2012) Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. J Geophys Res Atmosp 117:D5

    Google Scholar 

  • Yoo C (2002) A ground validation problem of remotely sensed soil moisture data. Stoch Env Res Risk Assess 16(3):175–187

    Article  Google Scholar 

  • Yoo C, Kim S, Kim TW (2006) Assessment of drought vulnerability based on the soil moisture PDF. Stoch Env Res Risk Assess 21(2):131–141

    Article  Google Scholar 

  • Zohaib M, Kim H, Choi M (2017) Evaluating the patterns of spatiotem-poral trends of root zone soil moisture in major climate regions in East Asia. J Geophys Res Atmosp 122:2

    Google Scholar 

Download references

Acknowledgements

This research was supported by Space Core Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2014M1A3A3A02034789) and the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (NRF-2016R1A2B4008312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minha Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Jeong, J., Zohaib, M. et al. Spatial disaggregation of ASCAT soil moisture under all sky condition using support vector machine. Stoch Environ Res Risk Assess 32, 3455–3473 (2018). https://doi.org/10.1007/s00477-018-1620-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-018-1620-3

Keywords

Navigation