Skip to main content
Log in

Z-estimators and auxiliary information for strong mixing processes

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This paper introduces a weighted Z-estimator for moment condition models, assuming auxiliary information on the unknown distribution of the data and under the assumption of weak dependence (strong mixing processes). We model serial dependence through a simple nonparametric blocking device, routinely used in the bootstrap literature. The weights that carry the auxiliary information are computed by means of generalized empirical likelihood. The resulting weighted estimator is shown to be consistent and asymptotically normal. The proposed estimator is computationally simple and shows nice finite sample features when compared to asymptotically equivalent estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Smith (2011) assumes that the auxiliary set of moments also depends on \(\beta\), while in our case it does not. The final result is different since the asymptotic variance includes extra terms that involve the first derivatives of the auxiliary moments. However, the substance is essentially the same.

References

  • Altonji JG, Segal LM (1996) Small-sample bias in GMM estimation of covariance structures. J Bus Econ Stat 14:353–366

    Google Scholar 

  • Bandyopadhyay S (2006) A note on strong mixing. Working Paper

  • Bevilacqua M, Crudu F, Porcu E (2015) Combining euclidean and composite likelihood for binary spatial data estimation. Stoch Environ Res Risk Assess 29(2):335–346

    Article  Google Scholar 

  • Bravo F (2009) Blockwise generalized empirical likelihood inference for non-linear dynamic moment conditions models. Econom J 12(2):208–231

    Article  Google Scholar 

  • Bravo F (2010) Efficient M-estimators with auxiliary information. J Stat Plan Inference 140:3326–3342

    Article  Google Scholar 

  • Bravo F (2011) Improved generalized method of moments estimators for weakly dependent observations. J Time Ser Anal 32:680–698

    Article  Google Scholar 

  • Buishand T, Tank AK (1996) Regression model for generating time series of daily precipitation amounts for climate change impact studies. Stoch Hydrol Hydraul 10(2):87–106

    Article  Google Scholar 

  • Chen J, Qin J (1993) Empirical likelihood estimation for finite populations and the effective usage of auxiliary information. Biometrika 80:107–116

    Article  Google Scholar 

  • Hau M, Tong H (1989) A practical method for outlier detection in autoregressive time series modelling. Stoch Hydrol Hydraul 3(4):241–260

    Article  Google Scholar 

  • Ibragimov IA, Linnik YV (1971) Independent and stationary sequences of random variables. Wolters-Noordhoff, Groningen

    Google Scholar 

  • Kaufmann RK, Stern DI (1997) Evidence for human influence on climate from hemispheric temperature relations. Nature 388(6637):39

    Article  CAS  Google Scholar 

  • Kitamura Y (1997) Empirical likelihood methods with weakly dependent processess. Ann Stat 25:2084–2102

    Article  Google Scholar 

  • Kuk AYC, Mak TK (1989) Median estimation in the presence of auxiliary information. J R Stat Soc B 51:261–269

    Google Scholar 

  • Newey WK, McFadden D (1994) Large sample estimation and hypothesis testing. In: Engle R, McFadden D (eds) Handbook of econometrics, vol IV. North Holland, Amsterdam

    Google Scholar 

  • Newey WK, Smith RJ (2004) Higher order properties of GMM and generalized empirical likelihood estimators. Econometrica 72:219–255

    Article  Google Scholar 

  • Newey WK, West K (1987) A simple positive semidefinite heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 50:703–708

    Article  Google Scholar 

  • Newey WK, West K (1994) Automatic lag selection in covariance matrix estimation. Rev Econ Stud 61:631–653

    Article  Google Scholar 

  • Owen AB (2001) Empirical likelihood. Chapman-Hall, London

    Book  Google Scholar 

  • Paruolo P, Murphy B, Janssens-Maenhout G (2015) Do emissions and income have a common trend? A country-specific, time-series, global analysis, 1970–2008. Stoch Environ Res Risk Assess 29(1):93–107

    Article  Google Scholar 

  • Politis DN, Romano JP (1993) On the sample variance of linear statistics derived from mixing sequences. Stoch Process Appl 45:155–167

    Article  Google Scholar 

  • Qian H, Schmidt P (1999) Improved instrumental variables and generalized method of moments estimators. J Econ 91:145–169

    Article  Google Scholar 

  • Rosenblatt M (1956) A central limit theorem and a strong mixing condition. Proc Natl Acad Sci USA 42:43–47

    Article  CAS  Google Scholar 

  • Smith RJ (2011) GEL criteria for moment condition models. Econ Theory 27:1192–1235

    Article  Google Scholar 

  • Stern DI, Kaufmann RK (1999) Econometric analysis of global climate change. Environ Model Softw 14(6):597–605

    Article  Google Scholar 

  • Stock J, Kaufmann R, Kauppi H (2006) Emissions, concentrations and temperature: a time series analysis. Clim Change 77(3–4):249–278

    Google Scholar 

  • Van der Vaart A (2007) Asymptotic statistics. Cambridge University Press, Cambridge

    Google Scholar 

  • Wang W, Bobojonov I, Härdle W, Odening M (2013) Testing for increasing weather risk. Stoch Environ Res Risk Assess 27(7):1565–1574

    Article  Google Scholar 

  • Yu G-H, Chen H-L, Wen W-C (2002) A distribution-free method for forecasting non-gaussian time series. Stoch Environ Res Risk Assess 16(2):101–111

    Article  Google Scholar 

  • Zhang B (1995) M-estimation and quantile estimation in the presence of auxiliary information. J Stat Plan Inference 44:77–94

    Article  Google Scholar 

  • Zhang B (1996) Estimating a population variance with known mean. Int Stat Rev 64:215–229

    Article  Google Scholar 

Download references

Acknowledgements

Federico Crudu’s research is supported by Proyecto Fondecyt Iniciacion N. 11140433 from the Chilean Government. Research work of Emilio Porcu is supported by Proyecto Fondecyt Regular N. 1170290 from the Chilean Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Crudu.

Appendix

Appendix

In what follows we present the proofs of the theorems presented in Sect. 3 and some auxiliary results. In addition, we use the following notation: \(\rightarrow _{p}\) and \(\rightarrow _{d}\) denote convergence in probability and convergence in distribution; C is a generic positive constant; CS and T denote Cauchy–Schwarz inequality and triangular inequality respectively; \(\left\| \cdot \right\|\) is the Euclidean norm of \(\cdot\). The CLT is meant to be a central limit theorem for strong mixing sequences (see e.g. Ibragimov and Linnik 1971) and CMT is the continuous mapping theorem.

Proof of Lemma 1

Consider again

$$\begin{aligned} \widehat{R}\left( \lambda \right) =\frac{1}{b}\sum _{i=1}^{b}\rho \left( \lambda ^{\prime }g_{i}\right) . \end{aligned}$$

Since \(\rho\) is concave on the real line, \(\widehat{R}\) inherits this property, since concavity is closed under linear combinations. Moreover, Assumptions 2–4 match Assumptions (i)–(iii) as in Theorem 2.7 of Newey and McFadden (1994), implying consistency of \(\widehat{\lambda }\). The mean value expansion of the first order for the GEL criterion function can be written as

$$\begin{aligned} 0&=\frac{\partial \widehat{R}\big ( \widehat{\lambda }\big )}{\partial \lambda } = \frac{1}{b}\sum _{i=1}^{b}\rho ^{(1)}\left( \dot{\lambda }'g_{i}\right) g_{i} \\&=-\bar{g}+\left( \frac{q}{b}\sum _{i=1}^{b}\rho ^{(1)}\left( \dot{\lambda }'g_{i}\right) g_{i}g_{i}'\right) \frac{\widehat{\lambda }}{q} \end{aligned}$$

where \(\bar{g}: =\sum _{i=1}^{b}g_{i}/b\) and \(\dot{\lambda }\) is a mean value between zero and \(\widehat{\lambda }\). Since \(\widehat{\lambda }\) is consistent and \(\left\| \dot{\lambda }\right\| \le \left\| \widehat{\lambda }\right\|\), we have that \(\rho ^{(1)}\left( \dot{\lambda }'g_{i}\right) =-1+o_{p}\left( 1\right)\). Multiplying both sides of the equation above by \(\sqrt{n}\), we obtain

$$\begin{aligned} 0=-\sqrt{n}\bar{g}-\widehat{\varSigma }\sqrt{n}\frac{\widehat{\lambda }}{q}-o_{p}\left( 1\right) \widehat{\varSigma }\sqrt{n}\frac{\widehat{\lambda }}{q} \end{aligned}$$

where \(\widehat{\varSigma }=q\sum _{i=1}^{b}g_{i}g_{i}'/b\). Notice that \(\widehat{\varSigma }\sqrt{n}\frac{\widehat{\lambda } }{q}=O_{p}\left( 1\right)\); therefore, direct inspection shows that

$$\begin{aligned} \sqrt{n}\frac{\widehat{\lambda }}{q}=-\widehat{\varSigma }^{-1}\sqrt{n}\bar{g} +o_{p}\left( 1\right) . \end{aligned}$$
(7)

The proof is then completed through direct application of CLT as well as Slutsky theorem. \(\square\)

Proof of Theorem 1

[Consistency of \(\widehat{\beta }_{\pi }\)] Let us compute a mean value expansion of

$$\begin{aligned} \widehat{\pi }_{i}=\frac{\rho ^{(1)}\left( \widehat{\lambda }'g_{i}\right) }{ \sum _{j}\rho ^{(1)}\left( \widehat{\lambda }'g_{j}\right) } \end{aligned}$$

about \(\lambda =0\), where \(\widehat{\lambda }\) is a consistent estimator for \(\lambda\):

$$\begin{aligned} \widehat{\pi }_{i}= & {} \frac{1}{b}+\frac{1}{b}\left( \frac{\rho ^{(2)}\left( \dot{ \lambda }'g_{i}\right) g_{i}'}{\frac{1}{b}\sum _{j}\rho ^{(1)}\left( \dot{\lambda }'g_{j}\right) }-\frac{\rho ^{(1)}\left( \widehat{ \lambda }'g_{i}\right) \frac{1}{b}\sum _{j}\rho ^{(2)}\left( \dot{ \lambda }'g_{j}\right) g_{j}'}{\left( \frac{1}{b} \sum _{j}\rho ^{(1)}\left( \dot{\lambda }'g_{j}\right) \right) ^{2}} \right) \left( \widehat{\lambda }-0\right) \\= & {} \frac{1}{b}+\frac{1}{b}\left( \frac{\rho ^{(2)}\left( \dot{\lambda }'g_{i}\right) \widehat{\lambda }'g_{i}}{\frac{1}{b}\sum _{j}\rho ^{(1)}\left( \dot{\lambda }'g_{j}\right) }-\frac{\rho ^{(1)}\left( \widehat{ \lambda }'g_{i}\right) \frac{1}{b}\sum _{j}\rho ^{(2)}\left( \dot{ \lambda }'g_{j}\right) \widehat{\lambda }^{\prime }g_{j}}{\left( \frac{1}{ b}\sum _{j}\rho ^{(1)}\left( \dot{\lambda }'g_{j}\right) \right) ^{2}} \right) . \end{aligned}$$

From results of Lemma 1 we obtain

$$\begin{aligned} \widehat{\pi }_{i}=\frac{1}{b}+\frac{1}{b}\left( \widehat{\lambda }' g_{i}+o_{p}\left( 1\right) \right) \end{aligned}$$
(8)

and

$$\begin{aligned} \widehat{\pi }_{i}=\frac{1}{b}\left( 1+o_{p}\left( 1\right) \right) . \end{aligned}$$
(9)

From Bravo (2009) we have \(\widehat{h}_{\pi }\left( \beta \right) = \widehat{m}\left( \beta \right) +O_{p}\left( M/n\right)\). Then, by adding and subtracting \(\widehat{h}_{\pi }\left( \widehat{\beta }_{\pi }\right)\) and by T, we have

$$\begin{aligned} \left\| m\left( \widehat{\beta }_{\pi }\right) \right\| \le \left\| m\left( \widehat{\beta }_{\pi }\right) -\widehat{h}_{\pi }\left( \widehat{\beta }_{\pi }\right) \right\| +\left\| \widehat{h}_{\pi }\left( \widehat{\beta }_{\pi }\right) \right\| \end{aligned}$$

Moreover, by optimality of \(\widehat{\beta }_{\pi }\) and since \(m\left( \beta _{0}\right) =0\), and by some results in Bravo (2009) and T, we get

$$\begin{aligned} \left\| m\left( \widehat{\beta }_{\pi }\right) \right\|\le & {} \left\| m\left( \widehat{\beta }_{\pi }\right) -\widehat{m}\left( \widehat{\beta }_{\pi }\right) \right\| +\left( 1+o_{p}\left( 1\right) \right) \left\| \widehat{m}\left( \beta _{0}\right) -m\left( \beta _{0}\right) \right\| +O_{p}\left( \frac{M }{n}\right) \\\le & {} \sup _{\beta \in {\mathcal {B}}}\left\| m\left( \beta \right) -\widehat{m} \left( \beta \right) \right\| +\left( 1+o_{p}\left( 1\right) \right) \sup _{\beta \in {\mathcal {B}}}\left\| \widehat{m}\left( \beta \right) -m\left( \beta \right) \right\| +O_{p}\left( \frac{M}{n}\right) . \end{aligned}$$

Assumption 3 implies that \(\sup _{\beta \in {\mathcal {B}}}\left\| m\left( \beta \right) -\widehat{m}\left( \beta \right) \right\| =o_{p}\left( 1\right)\); hence

$$\begin{aligned} \left\| m\left( \widehat{\beta }_{\pi }\right) \right\| \le o_{p}\left( 1\right) . \end{aligned}$$

Since \(m\left( \beta \right)\) is bounded away from zero for \(\left\| \beta -\beta _{0}\right\| >\delta\) (Assumption 2), it follows that \(\widehat{ \beta }_{\pi }\in \left\| \beta -\beta _{0}\right\| <\delta\). As \(\delta\) is arbitrary, \(\widehat{\beta }_{\pi }{\mathop {\longrightarrow }\limits ^{p}}\beta _{0}.\)\(\square\)

Proof of Theorem 2

[Asymptotic Normality of \(\widehat{\beta }_{\pi }\)] Let us consider \(\sum _{i}\widehat{\pi }_{i}h_{i}\left( \widehat{\beta }_{\pi }\right) =0,\) by replacing the probabilities with the expression in Eq. (8), we have

$$\begin{aligned} 0=\frac{1}{b}\sum _{i}\left( 1+\widehat{\lambda }^{\prime }g_{i}+o_{p}\left( 1\right) \right) h_{i}\left( \widehat{\beta }_{\pi }\right) . \end{aligned}$$

Then, via a mean value expansion of \(h_{i}\left( \widehat{\beta }_{\pi }\right)\) about \(\beta _{0}\), for \(\widehat{\beta }_{\pi }\) being consistent,

$$\begin{aligned} 0= & {} \sum _{i}\left( 1+\widehat{\lambda }^{\prime }g_{i}+o_{p}\left( 1\right) \right) h_{i}\left( \widehat{\beta }_{\pi }\right) \\= & {} \sum _{i}\left( 1+\widehat{\lambda }^{\prime }g_{i}\right) \left( h_{i}\left( \beta _{0}\right) +\frac{\partial h_{i}\left( \dot{\beta } \right) }{\partial \beta }\left( \widehat{\beta }_{\pi }-\beta _{0}\right) \right) +o_{p}\left( 1\right) \widehat{h}\left( \widehat{\beta }_{\pi }\right) \end{aligned}$$

where \(\left\| \dot{\beta }-\beta _{0}\right\| \le \left\| \widehat{ \beta }_{\pi }-\beta _{0}\right\|\). Let us define \(\widehat{B}\left( \beta \right) =q\sum _{i}h_{i}\left( \beta \right) g_{i}^{\prime }/b\). Then, by appropriate rescaling and Eq. (7)

$$\begin{aligned} 0= & {} \sqrt{n}\widehat{h}\left( \beta _{0}\right) +\widehat{B}\left( \beta _{0}\right) \widehat{\varSigma }^{-1}\sqrt{n}\bar{g} \\&+\left( \frac{1}{b}\sum _{i}\frac{\partial h_{i}\left( \dot{\beta }\right) }{ \partial \beta }+\widehat{\lambda }^{\prime }\sum _{i}g_{i}\frac{\partial h_{i}\left( \dot{\beta } \right) }{\partial \beta }/b\right) \sqrt{n}\left( \widehat{\beta }_{\pi }-\beta _{0}\right) \\&+o_{p}\left( 1\right) \sqrt{n}\widehat{h}\left( \widehat{\beta }_{\pi }\right) \\= & {} A_{1}+A_{2}+A_{3} \end{aligned}$$

where

$$\begin{aligned} A_{1}= & {} \sqrt{n}\widehat{h}\left( \beta _{0}\right) +\widehat{B}\left( \beta _{0}\right) \widehat{\varSigma }^{-1}\sqrt{n}\bar{g},\\ A_{2}= & {} \left( \sum _{i}\partial h_{i}\left( \dot{\beta }\right) /\partial \beta +\widehat{\lambda }^{\prime }\sum _{i}g_{i}\partial h_{i}\left( \beta _{0}\right) /\partial \beta /b\right) \sqrt{n}\left( \widehat{\beta }_{\pi }-\beta _{0}\right) ,\\ A_{3}= & {} o_{p}\left( 1\right) \sqrt{n}\widehat{h}\left( \widehat{\beta }_{\pi }\right) . \end{aligned}$$

From Assumption 3 and results in Bravo (2009) \(\sqrt{n}\widehat{h} \left( \beta _{0}\right) {\mathop {\longrightarrow }\limits ^{d}}N\left( 0,S\left( \beta _{0}\right) \right)\) and \(\sqrt{n}\bar{g}{\mathop {\longrightarrow }\limits ^{d}}N\left( 0,\varSigma \right)\). Then, after simple calculations, we get \(A_{1}{\mathop {\longrightarrow }\limits ^{d}}N\left( 0,W\right)\), where

$$\begin{aligned} W= & {} \left( \begin{array}{cc} I,&-B\left( \beta _{0}\right) \varSigma ^{-1} \end{array} \right) \left( \begin{array}{cc} S\left( \beta _{0}\right) &{} B\left( \beta _{0}\right) \\ B\left( \beta _{0}\right) ^{\prime } &{} \varSigma \end{array} \right) \left( \begin{array}{c} I \\ -\varSigma ^{-1}B\left( \beta _{0}\right) ^{\prime } \end{array} \right) \\= & {} S\left( \beta _{0}\right) -B\left( \beta _{0}\right) \varSigma ^{-1}B\left( \beta _{0}\right) ^{\prime } \end{aligned}$$

Let us now focus attention on \(A_{2}\). By results in Bravo (2009) and T

$$\begin{aligned} \left\| \widehat{\lambda }^{\prime }\frac{1}{b}\sum _{i}g_{i}\frac{\partial h_{i}\left( \dot{\beta }\right) }{\partial \beta ^{\prime }}\right\|\le & {} \left\| \widehat{\lambda }\right\| \left\| \frac{1}{n}\sum _{t}f_{t} \frac{\partial m_{t}\left( \dot{\beta }\right) }{\partial \beta ^{\prime }} +O_{p}\left( \frac{q}{n}\right) \right\| \\\le & {} \left\| \widehat{\lambda }\right\| \frac{1}{n}\sum _{t}\sup _{\beta \in {\mathcal {B}}}\left\| f_{t}\frac{\partial m_{t}\left( \beta \right) }{ \partial \beta ^{\prime }}\right\| +o_{p}\left( 1\right) . \end{aligned}$$

Thus,

$$\begin{aligned} \left\| \widehat{\lambda }^{\prime }\frac{1}{b}\sum _{i}g_{i}\frac{\partial h_{i}\left( \dot{\beta }\right) }{\partial \beta }\right\| \le o_{p}\left( 1\right) . \end{aligned}$$

By CMT and Assumption 3 \(\sqrt{n}\widehat{h}\left( \widehat{\beta }_{\pi }\right)\) is normally distributed. Thus, its order of magnitude is \(O_{p}\left( 1\right)\) and \(A_{3}=o_{p}\left( 1\right)\). Finally,

$$\begin{aligned} M\left( \beta _{0}\right) ^{\prime }\sqrt{n}\left( \widehat{\beta }_{\pi }-\beta _{0}\right) =-\left( \begin{array}{cc} I,&-\widehat{B}\left( \beta _{0}\right) \varSigma ^{-1} \end{array} \right) \left( \begin{array}{c} \sqrt{n}\widehat{h}\left( \beta _{0}\right) \\ \sqrt{n}\bar{g} \end{array} \right) +o_{p}\left( 1\right) \end{aligned}$$

and

$$\begin{aligned} \sqrt{n}\left( \widehat{\beta }_{\pi }-\beta _{0}\right) =-\left( M\left( \beta _{0}\right) ^{\prime }\right) ^{-1}\left( \begin{array}{cc} I,&-\widehat{B}\left( \beta _{0}\right) \varSigma ^{-1} \end{array} \right) \left( \begin{array}{c} \sqrt{n}\widehat{h}\left( \beta _{0}\right) \\ \sqrt{n}\bar{g} \end{array} \right) +o_{p}\left( 1\right) \end{aligned}$$

which implies, by CLT applied to \(\sqrt{n}\bar{g}\), Assumption 3 and CMT,

$$\begin{aligned} \sqrt{n}\left( \widehat{\beta }_{\pi }-\beta _{0}\right) {\mathop {\longrightarrow }\limits ^{d}}N\left( 0,\left( M\left( \beta _{0}\right) ^{\prime }\right) ^{-1}\left( S\left( \beta _{0}\right) -B\left( \beta _{0}\right) \varSigma ^{-1}B\left( \beta _{0}\right) ^{\prime }\right) \left( M\left( \beta _{0}\right) \right) ^{-1}\right) . \end{aligned}$$

\(\square\)

Proof of Corollary 1

From results in Lemma 1 and Theorem 1 we have

$$\begin{aligned} \widehat{\mu }_{\pi }\left( z\right)= & {} \frac{1}{b}\sum _{t=1}^{b}1_{M}\left( z_{i}\le z\right) \left( 1+\widehat{\lambda }^{\prime }g_{i}+o_{p}\left( 1\right) \right) \\&\widehat{\mu }_{b}\left( z\right) -\bar{g}^{\prime }\widehat{\varSigma }^{-1}\frac{q}{ \sqrt{n}b}\sum _{t=1}^{b}g_{i}1_{q}\left( z_{i}\le z\right) +o_{p}\left( \frac{1}{\sqrt{n}}\right) \end{aligned}$$

Then, by adding and subtracting \(\mu \left( x\right)\) and multiplying both sides by \(\sqrt{n}\), we get

$$\begin{aligned} \sqrt{n}\left( \widehat{\mu }_{\pi }\left( z\right) -\mu \left( x\right) \right)&=\sqrt{n}\left( \widehat{\mu }_{b}\left( z\right) -\mu \left( x\right) \right) - \sqrt{n}\bar{g}^{\prime }\widehat{\varSigma }\frac{1}{b}\sum _{t=1}^{b}g_{i}1_{q} \left( z_{i}\le z\right) +o_{p}\left( 1\right) \\&=\left( \begin{array}{cc} 1,&-\widehat{a}^{\prime } \end{array} \right) \left( \begin{array}{c} \sqrt{n}\left( \widehat{\mu }_{b}\left( z\right) -\mu \left( x\right) \right) \\ \sqrt{n}\bar{g} \end{array} \right) \\&{\mathop {\longrightarrow }\limits ^{d}} \, N\left( 0,\sigma ^{2}-a^{\prime }\varSigma ^{-1}a\right) . \end{aligned}$$

The result follows from an application of CLT and Slutsky’s theorem. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crudu, F., Porcu, E. Z-estimators and auxiliary information for strong mixing processes. Stoch Environ Res Risk Assess 33, 1–11 (2019). https://doi.org/10.1007/s00477-018-1602-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-018-1602-5

Keywords

Navigation