Skip to main content
Log in

Admissible nested covariance models over spheres cross time

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Nested covariance models, defined as linear combinations of basic covariance functions, are very popular in many branches of applied statistics, and in particular in geostatistics. A notorious limit of nested models is that the constants in the linear combination are bound to be nonnegative in order to preserve positive definiteness (admissibility). This paper studies nested models on d-dimensional spheres and spheres cross time. We show the exact interval of admissibility for the constants involved in the linear combinations. In particular, we show that at least one constant can be negative. One of the implications is that one can obtain a nested model attaining negative correlations. We provide characterization theorems for arbitrary linear combinations as well as for nonconvex combinations involving two covariance functions. We illustrate our findings through several examples involving nonconvex combinations of well-known parametric families of covariance functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arafat A, Porcu E, Bevilacqua M, Mateu J (2018) Equivalence and orthogonality of Gaussian measures on spheres. J Multivar Anal 167:306–318

    Article  Google Scholar 

  • Atkinson K, Han W (2012) Spherical harmonics and approximations on the unit sphere: an introduction, volume 2044 of lecture notes in mathematics. Springer, Heidelberg

    Book  Google Scholar 

  • Berg C, Porcu E (2017) From Schoenberg coefficients to Schoenberg functions. Constr Approx 45:217–241

    Article  Google Scholar 

  • Berg C, Peron AP, Porcu E (2018) Schoenberg’s theorem for real and complex Hilbert spheres revisited. J Approx Theory 228:58–78

    Article  Google Scholar 

  • Bevilacqua M, Gaetan C, Mateu J, Porcu E (2012) Estimating space and space–time covariance functions: a weighted composite likelihood approach. J Am Stat Assoc 107:268–280

    Article  CAS  Google Scholar 

  • Bonat WH, Jørgensen B (2016) Multivariate covariance generalized linear models. J R Stat Soc Ser C Appl Stat 65(5):649–675

    Article  Google Scholar 

  • Chen D, Menegatto VA, Sun X (2003) A necessary and sufficient condition for strictly positive definite functions on spheres. Proc Am Math Soc 131(9):2733–2740 (electronic)

    Article  Google Scholar 

  • Chilès J, Delfiner P (2012) Geostatistics: modeling spatial uncertainty. Wiley, New York

    Book  Google Scholar 

  • Clarke J, Alegría A, Porcu E (2018) Regularity properties and simulations of Gaussian random fields on the sphere cross time. Electron J Stat 12:399–426. arXiv:1611.02851

  • Dai F, Xu Y (2013) Approximation theory and harmonic analysis on spheres and balls. Springer monographs in mathematics. Springer, New York

    Google Scholar 

  • Daley DJ, Porcu E (2014) Dimension walks and Schoenberg spectral measures. Proc Am Math Soc 142(5):1813–1824

    Article  Google Scholar 

  • Daley DJ, Porcu E, Bevilacqua M (2015) Classes of compactly supported covariance functions for multivariate random fields. Stoch Environ Res Risk Assess 29(4):1249–1263

    Article  Google Scholar 

  • De Iaco S, Posa D (2018) Strict positive definiteness in geostatistics. Stoch Environ Res Risk Assess 32(3):577–590

    Article  Google Scholar 

  • De Iaco S, Myers DE, Posa D (2001) Space–time analysis using a general product–sum model. Stat Probab Lett 52(1):21–28

    Article  Google Scholar 

  • Estrade A, Fariñas A, Porcu E (2017) Characterization theorems for covariance functions on the n-dimensional sphere across time. Technical report, University Federico Santa Maria, MAP5 2016-34 [hal-01417668]

  • Gneiting T (2013) Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4):1327–1349

    Article  Google Scholar 

  • Gregori P, Porcu E, Mateu J, Sasvári Z (2008) On potentially negative space time covariances obtained as sum of products of marginal ones. Ann Inst Stat Math 60(4):865–882

    Article  Google Scholar 

  • Jones RH (1963) Stochastic processes on a sphere. Ann Math Stat 34:213–218

    Article  Google Scholar 

  • Journel AG, Huijbregts CJ (1978) Mining geostatistics. Academic Press, Cambridge

    Google Scholar 

  • Kleiber W, Porcu E (2015) Nonstationary matrix covariances: compact support, long range dependence and quasi-arithmetic constructions. Stoch Environ Res Risk Assess 29(1):193–204

    Article  Google Scholar 

  • Lang A, Schwab C (2015) Isotropic random fields on the sphere: regularity, fast simulation and stochastic partial differential equations. Ann Appl Probab 25:3047–3094

    Article  Google Scholar 

  • Marinucci D, Peccati G (2011) Random fields on the sphere, representation, limit theorems and cosmological applications. Cambridge University Press, New York

    Book  Google Scholar 

  • Menegatto VA (1995) Strictly positive definite kernels on the circle. Rocky Mt J Math 25(3):1149–1163

    Article  Google Scholar 

  • Menegatto VA, Oliveira CP, Peron AP (2006) Strictly positive definite kernels on subsets of the complex plane. Comput Math Appl 51(8):1233–1250

    Article  Google Scholar 

  • Møller J, Nielsen M, Porcu E, Rubak E (2018) Determinantal point process models on the sphere. Bernoulli 24(2):1171–1201. arXiv:1607.03675

    Article  Google Scholar 

  • Pan J, Mackenzie G (2003) On modelling mean-covariance structures in longitudinal studies. Biometrika 90(1):239–244

    Article  Google Scholar 

  • Porcu E, Gregori P, Mateu J (2006) Nonseparable stationary anisotropic space–time covariance functions. Stoch Environ Res Risk Assess 21(2):113–122

    Article  Google Scholar 

  • Porcu E, Daley DJ, Buhmann M, Bevilacqua M (2013) Radial basis functions with compact support for multivariate geostatistics. Stoch Environ Res Risk Assess 27(4):909–922

    Article  Google Scholar 

  • Porcu E, Bevilacqua M, Genton MG (2016) Spatio-temporal covariance and cross-covariance functions of the great circle distance on a sphere. J Am Stat Assoc 111(514):888–898

    Article  CAS  Google Scholar 

  • Porcu E, Alegria A, Furrer R (2017) Modeling temporally evolving and spatially globally dependent data. Int Stat Rev. arXiv:1706.09233

  • Pourahmadi M (1999) Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika 86(3):677–690

    Article  Google Scholar 

  • Pourahmadi M (2011) Covariance estimation: the GLM and regularization perspectives. Stat Sci 26(3):369–387

    Article  Google Scholar 

  • Schoenberg IJ (1942) Positive definite functions on spheres. Duke Math J 9:96–108

    Article  Google Scholar 

  • Serra J (1968) Les structures gigognes: morphologie mathématique et interprétation métallogénique. Miner Depos 3:135–154

    Article  CAS  Google Scholar 

  • Soubeyrand S, Enjalbert J, Sache I (2008) Accounting for roughness of circular processes: using Gaussian random process to model the anisotropic spread of airbone plant disease. Theor Popul Biol 73(1):92–103

    Article  Google Scholar 

  • Wackernagel H (2003) Multivariate geostatistics: an introduction with applications. Springer, Berlin

    Book  Google Scholar 

  • Yakhot V, Orszag SA, She Z-S (1989) Space–time correlations in turbulence: kinematical versus dynamical effects. Phys Fluids A 1(2):184–186

    Article  Google Scholar 

Download references

Acknowledgements

Ana Peron was partially supported by São Paulo Research Foundation (FAPESP) under Grants 2016/03015-7 and 2016/09906-0. Emilio Porcu and Xavier Emery acknowledge the support of Grant CONICYT/FONDECYT/REGULAR/1170290 from the Chilean Commission for Scientific and Technological Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Emery.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peron, A., Porcu, E. & Emery, X. Admissible nested covariance models over spheres cross time. Stoch Environ Res Risk Assess 32, 3053–3066 (2018). https://doi.org/10.1007/s00477-018-1576-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-018-1576-3

Keywords

Navigation