Skip to main content
Log in

Bayesian autoregressive spatiotemporal model of PM10 concentrations across Peninsular Malaysia

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Rapid industrialization and haze episodes in Malaysia ensure pollution remains a public health challenge. Atmospheric pollutants such as PM10 are typically variable in space and time. The increased vigilance of policy makers in monitoring pollutant levels has led to vast amounts of spatiotemporal data available for modelling and inference. The aim of this study is to model and predict the spatiotemporal daily PM10 levels across Peninsular Malaysia. A hierarchical autoregressive spatiotemporal model is applied to daily PM10 concentration levels from thirty-four monitoring stations in Peninsular Malaysia during January to December 2011. The model set in a three stage Bayesian hierarchical structure comprises data, process and parameter levels. The posterior estimates suggest moderate spatial correlation with effective range 157 km and a short term persistence of PM10 in atmosphere with temporal correlation parameter 0.78. Spatial predictions and temporal forecasts of the PM10 concentrations follow from the posterior and predictive distributions of the model parameters. Spatial predictions at the hold-out sites and one-step ahead PM10 forecasts are obtained. The predictions and forecasts are validated by computing the RMSE, MAE, R2 and MASE. For the spatial predictions and temporal forecasting, our results indicate a reasonable RMSE of 10.71 and 7.56, respectively for the spatiotemporal model compared to RMSE of 15.18 and 12.96, respectively from a simple linear regression model. Furthermore, the coverage probability of the 95% forecast intervals is 92.4% implying reasonable forecast results. We also present prediction maps of the one-step ahead forecasts for selected day at fine spatial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afroz R, Hassan MN, Ibrahim NA (2003) Review of air pollution and health impacts in Malaysia. Environ Res 92(2):71–77

    Article  CAS  Google Scholar 

  • Anderson JO, Thundiyil JG, Stolbach A (2012) Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol 8(2):166–175

    Article  CAS  Google Scholar 

  • Azmi SZ, Latif MT, Ismail AS, Juneng L, Jemain AA (2010) Trend and status of air quality at three different monitoring stations in the Klang Valley, Malaysia. Air Qual Atmos Health 3(1):53–64

    Article  CAS  Google Scholar 

  • Bakar KS, Sahu SK (2015) spTimer: spatio-temporal Bayesian modeling using R. J Stat Softw 63(15):1–32

    Article  Google Scholar 

  • Banerjee S, Gelfand AE, Carlin Bradeley P (2004) Hierarchical modeling and analysis for spatial data. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  • Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV et al (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121(21):2331–2378

    Article  CAS  Google Scholar 

  • Cameletti M, Ignaccolo R, Bande S (2011) Comparing spatio-temporal models for particulate matter in Piemonte. Environmetrics 22(8):985–996

    Article  Google Scholar 

  • Chen R, Kan H, Chen B, Huang W, Bai Z, Song G et al (2012) Association of particulate air pollution with daily mortality: the China air pollution and health effects study. Am J Epidemiol 175(11):1173–1181

    Article  Google Scholar 

  • Clark I (2010) Statistics or geostatistics? Sampling error or nugget. J S Afr Inst Min Metall 110(6):307–312

    Google Scholar 

  • DOE (Department of Environment Malaysia) (2016) Malaysia environmental quality report 2015

  • DOE (Department of Environment) (2017) Chronology of haze episodes in Malaysia: Department of Environment

  • Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013) Bayesian data analysis, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Handcock MS, Stein ML (1993) A Bayesian analysis of kriging. Technometrics 35:403. https://doi.org/10.2307/1270273

    Article  Google Scholar 

  • Hyndman RJ, Koehler AB (2006) Another look at measures of forecast accuracy. Int J Forecast 22(4):679–688

    Article  Google Scholar 

  • Juneng L, Latif MT, Tangang FT, Mansor H (2009) Spatio-temporal characteristics of PM10 concentration across Malaysia. Atmos Environ 43(30):4584–4594

    Article  CAS  Google Scholar 

  • Juneng L, Latif MT, Tangang F (2011) Factors influencing the variations of PM10 aerosol dust in Klang Valley, Malaysia during the summer. Atmos Environ 45(26):4370–4378

    Article  CAS  Google Scholar 

  • Krewski D, Jerrett M, Burnett RT, Ma R, Hughes E, Shi Y et al (2009) Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Res Rep Health Eff Inst. 140:5-114-36

    Google Scholar 

  • Lee S, Wolberg G, Shin SY (1997) Scattered data interpolation with multilevel B-splines. IEEE Trans Vis Comput Graph 3(3):228–244

    Article  Google Scholar 

  • Lenschow P, Abraham H-J, Kutzner K, Lutz M, Preuß J-D, Reichenbächer W (2001) Some ideas about the sources of PM10. Atmos Environ 35:23–33

    Article  Google Scholar 

  • Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L et al (2013) The carcinogenicity of outdoor air pollution. Lancet Oncol 14(13):1262–1263

    Article  CAS  Google Scholar 

  • Munir S (2016) Modelling the non-linear association of particulate matter (PM10) with meteorological parameters and other air pollutants—a case study in Makkah. Arab J Geosci 9(1):64

    Article  Google Scholar 

  • Nychka D, Furrer R, Paige J, Sain S (2015) Fields: tools for spatial data. https://doi.org/10.5065/d6w957ct

  • Qu WJ, Arimoto R, Zhang XY, Zhao CH, Wang YQ, Sheng LF et al (2010) Spatial distribution and interannual variation of surface PM10 concentrations over eighty-six Chinese cities. Atmos Chem Phys 10(12):5641–5662

    Article  CAS  Google Scholar 

  • Rückerl R, Schneider A, Breitner S, Cyrys J, Peters A (2011) Health effects of particulate air pollution: a review of epidemiological evidence. Inhal Toxicol 23(10):555–592

    Article  Google Scholar 

  • Sahu SK (2012) Hierarchical Bayesian models for space-time air pollution data. In: Subba Rao T, Subba Rao S, Rao CR (eds) Time series analysis: methods and applications, hand book of statistics. Elsevier, New York, pp 477–495

    Chapter  Google Scholar 

  • Sahu SK, Bakar KS (2012) Hierarchical Bayesian autoregressive models for large space-time data with applications to ozone concentration modelling. Appl Stoch Model Bus Ind 28(5):395–415

    Article  Google Scholar 

  • Sahu SK, Gelfand AE, Holland DM (2006) Spatio-temporal modeling of fine particulate matter. J Agric Biol Environ Stat 11(1):61–86

    Article  Google Scholar 

  • Sahu SK, Gelfand AE, Holland DM (2007) High-resolution space-time ozone modeling for assessing trends. J Am Stat Assoc 102(480):1221–1234

    Article  CAS  Google Scholar 

  • Sansuddin N, Ramli NA, Yahaya AS, Yusof NFFM, Ghazali NA, Al Madhoun WA (2011) Statistical analysis of PM10 concentrations at different locations in Malaysia. Environ Monit Assess 180(1–4):573–588

    Article  Google Scholar 

  • Shaddick G, Yan H, Salway R, Vienneau D, Kounali D, Briggs D (2013) Large-scale Bayesian spatial modelling of air pollution for policy support. J Appl Stat 40(4):777–794

    Article  Google Scholar 

  • Stein ML (1999) Interpolation of spatial data, Springer series in statistics. Springer, New York. https://doi.org/10.1007/978-1-4612-1494-6

    Book  Google Scholar 

  • Team RC (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ul-Saufie AZ, Yahaya AS, Ramli NA, Hamid HA (2011) Comparison between multiple linear regression and feed forward back propagation neural network models for predicting PM10 concentration level based on gaseous and meteorological parameters. Int J Appl Sci Technol 1(4):42–49

    Google Scholar 

  • Varikoden H, Samah AA, Babu CA (2010) Spatial and temporal characteristics of rain intensity in the peninsular Malaysia using TRMM rain rate. J Hydrol 387(3–4):312–319

    Article  Google Scholar 

  • Wikle CK (2007) Hierarchical models in environmental science. Int Stat Rev 71(2):181–199

    Article  Google Scholar 

  • Williams LJ, Chen L, Zosky GR (2017) The respiratory health effects of geogenic (earth derived) PM10. Inhal Toxicol 29(8):342–355

    Article  CAS  Google Scholar 

  • Yoon S, Kim M-K, Park J-S (2015) Comparison of statistical linear interpolation models for monthly precipitation in South Korea. Stoch Environ Res Risk Assess 29:1371–1382. https://doi.org/10.1007/s00477-015-1031-7

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Malaysia Department of Environment (DOE) for providing data to accomplish this study. The research was supported by Universiti Sains Malaysia research grants (Ref No: 304/PMATHS/6312094 and 304/PMATHS/6316054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norhashidah Awang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manga, E., Awang, N. Bayesian autoregressive spatiotemporal model of PM10 concentrations across Peninsular Malaysia. Stoch Environ Res Risk Assess 32, 3409–3419 (2018). https://doi.org/10.1007/s00477-018-1574-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-018-1574-5

Keywords

Navigation