Advertisement

Stochastic synthesis approximating any process dependence and distribution

  • Panayiotis Dimitriadis
  • Demetris Koutsoyiannis
Original Paper

Abstract

An extension of the symmetric-moving-average (SMA) scheme is presented for stochastic synthesis of a stationary process for approximating any dependence structure and marginal distribution. The extended SMA model can exactly preserve an arbitrary second-order structure as well as the high order moments of a process, thus enabling a better approximation of any type of dependence (through the second-order statistics) and marginal distribution function (through statistical moments), respectively. Interestingly, by explicitly preserving the coefficient of kurtosis, it can also simulate certain aspects of intermittency, often characterizing the geophysical processes. Several applications with alternative hypothetical marginal distributions, as well as with real world processes, such as precipitation, wind speed and grid-turbulence, highlight the scheme’s wide range of applicability in stochastic generation and Monte-Carlo analysis. Particular emphasis is given on turbulence, in an attempt to simulate in a simple way several of its characteristics regarded as puzzles.

Keywords

Stochastic modelling Grid-turbulence Hourly surface wind speed Daily precipitation Intermittency Kumaraswamy distribution Normal-inverse-Gaussian distribution 

Notes

Acknowledgements

The Authors are grateful to the Editor George Christakos, the anonymous Associate Editor and three Reviewers as well as to T. Iliopoulou, for their efforts, useful comments and suggestions that helped us improve the paper.

References

  1. Aksoy H, Toprak ZF, Aytek A, Ünal NE (2004) Stochastic generation of hourly mean wind speed data. Renew Energy 29:2111–2131CrossRefGoogle Scholar
  2. Balestrino A, Caiti A, Crisostomi E (2006) Efficient numerical approximation of maximum entropy estimates. Int J Control 79(9):1145–1155CrossRefGoogle Scholar
  3. Barndorff-Nielsen OE (1978) Hyperbolic distributions and distributions on hyperbolae. Scand J Stat 5:151–157Google Scholar
  4. Batchelor GK, Townsend AA (1949) The nature of turbulent motion at large wave-numbers. Proc R Soc Lond A 199:238–255CrossRefGoogle Scholar
  5. Castro JJ, Carsteanu AA, Fuentes JD (2011) On the phenomenology underlying Taylor’s hypothesis in atmospheric turbulence. Rev Mex Fis 57(1):60–64Google Scholar
  6. Cerutti S, Meneveau C (2000) Statistics of filtered velocity in grid and wake turbulence. Phys Fluids 12(1):143–165Google Scholar
  7. Chhikara R, Folks L (1989) The inverse Gaussian distribution: theory, methodology and applications. Marcel Dekker, New YorkGoogle Scholar
  8. Conradsen K, Nielsen LB, Prahm LP (1984) Review of Weibull statistics for estimation of wind speed distributions. J Clim Appl Meteorol 23:1173–1183CrossRefGoogle Scholar
  9. Cordeiro GM, de Castro M (2011) A new family of generalized distributions. J Stat Comput Simul 81:883–898CrossRefGoogle Scholar
  10. Deligiannis H, Dimitriadis P, Daskalou O, Dimakos Y, Koutsoyiannis D (2016) Global investigation of double periodicity οf hourly wind speed for stochastic simulation; application in Greece. Energy Procedia 97:278–285.  https://doi.org/10.1016/j.egypro.2016.10.001 CrossRefGoogle Scholar
  11. Dimitriadis P (2017) Hurst–Kolmogorov dynamics in hydrometeorological processes and in the microscale of turbulence, Ph.D. thesis, 167 pages, National Technical University of Athens, AthensGoogle Scholar
  12. Dimitriadis P, Koutsoyiannis D (2015a) Climacogram versus autocovariance and power spectrum in stochastic modelling for Markovian and Hurst–Kolmogorov processes. Stoch Env Res Risk Assess 29(6):1649–1669CrossRefGoogle Scholar
  13. Dimitriadis P, Koutsoyiannis D (2015b) Application of stochastic methods to double cyclostationary processes for hourly wind speed simulation. Energy Procedia 76:406–411.  https://doi.org/10.1016/j.egypro.2015.07.851 CrossRefGoogle Scholar
  14. Dimitriadis P, Koutsoyiannis D (2016) A parsimonious stochastic model for wind variability, 30 years of nonlinear dynamics in geosciences. Rhodes, GreeceGoogle Scholar
  15. Dimitriadis P, Koutsoyiannis D, Papanicolaou P (2016a) Stochastic similarities between the microscale of turbulence and hydrometeorological processes. Hydrol Sci J 61(9):1623–1640.  https://doi.org/10.1080/02626667.2015.1085988 CrossRefGoogle Scholar
  16. Dimitriadis P, Koutsoyiannis D, Tzouka K (2016b) Predictability in dice motion: how does it differ from hydrometeorological processes? Hydrol Sci J 61(9):1623–1640CrossRefGoogle Scholar
  17. Dimitriadis P, Gournary N, Koutsoyiannis D (2016c) Markov vs. Hurst–Kolmogorov behaviour identification in hydroclimatic processes. In: European Geosciences Union General Assembly 2016, Geophysical Research Abstracts, vol 18, Vienna, EGU2016-14577-4, European Geosciences UnionGoogle Scholar
  18. Dimitriadis P, Iliopoulou T, Tyralis H, Koutsoyiannis D (2017) Identifying the dependence structure of a process through pooled time series analysis. In: IAHS 2017 Scientific Assembly 10–14 JULY 2017, Port Elizabeth, South Africa, Water and Development: scientific challenges in addressing societal issues, W17: Stochastic hydrology: simulation and disaggregation modelsGoogle Scholar
  19. Efstratiadis A, Dialynas Y, Kozanis S, Koutsoyiannis D (2014) A multivariate stochastic model for the generation of synthetic time series at multiple time scales reproducing long-term persistence. Environ Model Softw 62:139–152.  https://doi.org/10.1016/j.envsoft.2014.08.017 CrossRefGoogle Scholar
  20. Fernandez B, Salas JD (1986) Periodic gamma autoregressive processes for operational hydrology. Water Resour Res 22(10):1385–1396CrossRefGoogle Scholar
  21. Frechet M (1951) Sur les tableaux de correlation dont les marges son donnees. Ann Univ Lyon Sect A 9:53–77Google Scholar
  22. Frisch U (2006) Turbulence: the legacy of A. N. Kolmogorov. Cambridge University Press, CambridgeGoogle Scholar
  23. Gneiting T (2000) Power-law correlations, related models for long-range dependence and their simulation. J Appl Prob 37(04):1104–1109CrossRefGoogle Scholar
  24. Gneiting T, Schlather M (2004) Stochastic models that separate fractal dimension and the hurst effect. SIAM Rev 46(2):269–282CrossRefGoogle Scholar
  25. Gneiting T, Ševčíková H, Percival DB (2012) Estimators of fractal dimension: assessing the roughness of time series and spatial data. Stat Sci 27(2):247–277CrossRefGoogle Scholar
  26. Halliwell LJ (2013) Classifying the tails of loss distributions. CAS E-Forum, vol 2Google Scholar
  27. Hoeffding W (1940) Scale-invariant correlation theory. In: Fisher NI, Sen PK (eds) The collected works of Wassily Hoeffding. Springer, New York, pp 57–107Google Scholar
  28. Ibragimov R, Lentzas G (2017) Copulas and long memory. Probab Surveys 14:289–327.  https://doi.org/10.1214/14-PS233 CrossRefGoogle Scholar
  29. Iliopoulou T, Papalexiou SM, Markonis Y, Koutsoyiannis D (2016) Revisiting long-range dependence in annual precipitation. J Hydrol.  https://doi.org/10.1016/j.jhydrol.2016.04.015 CrossRefGoogle Scholar
  30. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620CrossRefGoogle Scholar
  31. Kang HS, Chester S, Meneveau C (2003) Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. J Fluid Mech 480:129–160CrossRefGoogle Scholar
  32. Khan MS, King R, Hudson IL (2016) Statistics in transition new series, vol 17, No. 2, pp. 1–28, Transmuted Kumaraswamy DistributionGoogle Scholar
  33. Klugman SA, Panjer HH, Willmot GE (1998) Loss models: from data to decisions. Wiley, New YorkGoogle Scholar
  34. Kolmogorov AN (1931) Uber die analytischen Methoden in der Wahrscheinlichkcitsrechnung, Math. Ann. 104, 415–458. (English translation: On analytical methods in probability theory, In: Kolmogorov, A.N., 1992. Selected Works of A. N. Kolmogorov—Volume 2, Probability Theory and Mathematical Statistics A. N. Shiryayev, ed., Kluwer, Dordrecht, The Netherlands, pp. 62–108)Google Scholar
  35. Kolmogorov AN (1933) Grundbegrijfe der Wahrscheinlichkeitsrechnung, Ergebnisseder Math. (2), Berlin. (2nd English Edition: Foundations of the Theory of Probability, 84 pp. Chelsea Publishing Company, New York, 1956)Google Scholar
  36. Kolmogorov AN (1941a) The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Dokl Akad Nauk SSSR 30:299–303Google Scholar
  37. Kolmogorov AN (1941b) On the decay of isotropic turbulence in an incompressible viscous flow. Dokl Akad Nauk SSSR 31:538–540Google Scholar
  38. Kolmogorov AN (1941c) Dissipation energy in locally isotropic turbulence. Dokl Akad Nauk SSSR 32:16–18Google Scholar
  39. Koutsoyiannis D (2000) A generalized mathematical framework for stochastic simulation and forecast of hydrologic time series. Water Resour Res 36(6):1519–1533CrossRefGoogle Scholar
  40. Koutsoyiannis D (2002) The Hurst phenomenon and fractional Gaussian noise made easy. Hydrol Sci J 47(4):573–595CrossRefGoogle Scholar
  41. Koutsoyiannis D (2003) Climate change, the Hurst phenomenon, and hydrological statistics. Hydrol Sci J 48(1):3–24CrossRefGoogle Scholar
  42. Koutsoyiannis D (2004a) Statistics of extremes and estimation of extreme rainfall, 1, Theoretical investigation. Hydrol Sci J 49(4):575–590Google Scholar
  43. Koutsoyiannis D (2004b) Statistics of extremes and estimation of extreme rainfall, 2, Empirical investigation of long rainfall records. Hydrol Sci J 49(4):591–610Google Scholar
  44. Koutsoyiannis D (2005) Uncertainty, entropy, scaling and hydrological stochastics, 1, Marginal distributional properties of hydrological processes and state scaling. Hydrol Sci J 50(3):381–404Google Scholar
  45. Koutsoyiannis D (2010) HESS opinions “A random walk on water”. Hydrol Earth Syst Sci 14:585–601CrossRefGoogle Scholar
  46. Koutsoyiannis D (2011) Hurst–Kolmogorov dynamics as a result of extremal entropy production. Phys A 390(8):1424–1432CrossRefGoogle Scholar
  47. Koutsoyiannis D (2014) Entropy: from thermodynamics to hydrology. Entropy 16(3):1287–1314.  https://doi.org/10.3390/e16031287 CrossRefGoogle Scholar
  48. Koutsoyiannis D (2016) Generic and parsimonious stochastic modelling for hydrology and beyond. Hydrol Sci J 61(2):225–244CrossRefGoogle Scholar
  49. Koutsoyiannis D (2017) Entropy production in stochastics. Entropy 19(11):581CrossRefGoogle Scholar
  50. Koutsoyiannis D, Manetas A (1996) Simple disaggregation by accurate adjusting procedures. Water Resour Res 32(7):2105–2117.  https://doi.org/10.1029/96WR00488 CrossRefGoogle Scholar
  51. Koutsoyiannis D, Montanari A (2015) Negligent killing of scientific concepts: the stationarity case. Hydrol Sci J 60(7–8):1174–1183Google Scholar
  52. Koutsoyiannis D, Onof C, Wheater HS (2003) Multivariate rainfall disaggregation at a fine timescale. Water Resour Res 39(7):1173.  https://doi.org/10.1029/2002wr001600 CrossRefGoogle Scholar
  53. Koutsoyiannis D, Yao H, Georgakakos A (2008) Medium-range flow prediction for the Nile: a comparison of stochastic and deterministic methods. Hydrol Sci J 53(1):142–164CrossRefGoogle Scholar
  54. Koutsoyiannis D, Dimitriadis P, Lombardo F, Stevens S (2018) From fractals to stochastics: seeking theoretical consistency in analysis of geophysical data. In: Tsonis A (ed) Advances in nonlinear geosciences. Springer, New York.  https://doi.org/10.1007/978-3-319-58895-7 CrossRefGoogle Scholar
  55. Kraichnan RH (1959) The structure of isotropic turbulence at very high Reynolds numbers. J Fluid Mech 5:497–543CrossRefGoogle Scholar
  56. Krajewski WF, Kruger A, Nespor V (1998) Experimental and numerical studies of small-scale rainfall measurements and variability. Water Sci Technol 37:131–138CrossRefGoogle Scholar
  57. Kumaraswamy P (1980) A generalized probability density function for double-bounded random processes. J Hydrol 46(1–2):79–88CrossRefGoogle Scholar
  58. Langousis A, Koutsoyiannis D (2006) A stochastic methodology for generation of seasonal time series reproducing overyear scaling behaviour. J Hydrol 322:138–154CrossRefGoogle Scholar
  59. Lavergnat J (2016) On the generation of colored non-Gaussian time sequences, hal (01399446)Google Scholar
  60. Lo Brano V, Orioli A, Ciulla G, Culotta S (2011) Quality of wind speed fitting distributions for the urban area of Palermo, Italy. Renew Energy 36(3):1026–1039CrossRefGoogle Scholar
  61. Lombardo F, Volpi E, Koutsoyiannis D (2012) Rainfall downscaling in time: theoretical and empirical comparison between multifractal and Hurst–Kolmogorov discrete random cascades. Hydrolog Sci J 57:1052–1066CrossRefGoogle Scholar
  62. Lombardo F, Volpi E, Koutsoyiannis D, Papalexiou SM (2014) Just two moments! A cautionary note against use of high-order moments in multifractal models in hydrology. Hydrol Earth Syst Sci 18:243–255CrossRefGoogle Scholar
  63. Lombardo F, Volpi E, Koutsoyiannis D, Serinaldi F (2017) A theoretically consistent stochastic cascade for temporal disaggregation of intermittent rainfall. Water Resour Res.  https://doi.org/10.1002/2017WR020529 CrossRefGoogle Scholar
  64. Markonis Y, Koutsoyiannis D (2013) Climatic variability over time scales spanning nine orders of magnitude: connecting Milankovitch cycles with Hurst–Kolmogorov dynamics. Surv Geophys 34(2):181–207CrossRefGoogle Scholar
  65. Nataf A (1962) Statistique mathematique-determination des distributions de probabilites dont les marges sont donnees. C R Acad Sci Paris 255:42–43Google Scholar
  66. Nelsen RB (2006) An introduction to copulas, Springer Series in Statistics, second editionGoogle Scholar
  67. Nespor V, Sevruk B (1999) Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation. J Atmos Ocean Technol 16:450–464CrossRefGoogle Scholar
  68. O’Connell PE, Koutsoyiannis D, Lins HF, Markonis Y, Montanari A, Cohn T (2016) The scientific legacy of Harold Edwin Hurst (1880–1978). Hydrol Sci J 61:1571–1590CrossRefGoogle Scholar
  69. Papadopoulos V, Giovanis DG (2018) Stochastic finite element methods - an introduction. Springer, p 138Google Scholar
  70. Papoulis A (1991) Probability, random variables, and stochastic processes, 3rd edn. McGraw-Hill, New YorkGoogle Scholar
  71. Pearson K (1930) On a new theory of progressive evolution. Ann Eugen IV(1–2):1–40CrossRefGoogle Scholar
  72. Pope SB (2000) Turbulent flows. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  73. Serinaldi F, Lombardo F (2017a) General simulation algorithm for autocorrelated binary processes. Phys Rev E 95:023312CrossRefGoogle Scholar
  74. Serinaldi F, Lombardo F (2017b) BetaBit: a fast generator of autocorrelated binary processes for geophysical research. EPL 118(3):30007CrossRefGoogle Scholar
  75. She ZS, Leveque E (1994) Universal scaling laws in fully developed turbulence. Phys Rev Lett 72:336CrossRefGoogle Scholar
  76. Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris 8:229–231Google Scholar
  77. Taylor GI (1938) Proc R Soc Lond A 164:476CrossRefGoogle Scholar
  78. Tsekouras G, Koutsoyiannis D (2014) Stochastic analysis and simulation of hydrometeorological processes associated with wind and solar energy. Renew Energy 63:624–633CrossRefGoogle Scholar
  79. Tsoukalas I, Efstratiadis A, Makropoulos C (2018) Stochastic periodic autoregressive to anything (SPARTA): modelling and simulation of cyclostationary processes with arbitrary marginal distributions. Water Resour Res 54(1):161–185.  https://doi.org/10.1002/2017WR021394 CrossRefGoogle Scholar
  80. Tyralis H, Koutsoyiannis D (2011) Simultaneous estimation of the parameters of the Hurst–Kolmogorov stochastic process. Stoch Environ Res Risk Assess 25:21–33CrossRefGoogle Scholar
  81. Tyralis H, Koutsoyiannis D, Kozanis S (2013) An algorithm to construct Monte Carlo confidence intervals for an arbitrary function of probability distribution parameters. Comput Stat 28(4):1501–1527CrossRefGoogle Scholar
  82. Villarini G, Mandapaka PV, Krajewski WF, Moore RJ (2008) Rainfall and sampling uncertainties: a rain gauge perspective. J Geophys Res Atmospheres 113:D11102.  https://doi.org/10.1029/2007JD009214 CrossRefGoogle Scholar
  83. Von Karman T (1948) The local structure of atmospheric turbulence. Dokl Akad Nauk SSSR 67:643Google Scholar
  84. Wilczek M, Daitche A, Friedrich R (2011) On the velocity distribution in homogeneous isotropic turbulence: correlations and deviations from Gaussianity. J Fluid Mech 676:191–217CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Water Resources and Environmental Engineering, School of Civil EngineeringNational Technical University of AthensZographouGreece

Personalised recommendations