Skip to main content
Log in

A composite spatial predictor via local criteria under a misspecified model

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Spatial prediction and variable selection for the study area are both important issues in geostatistics. If spatially varying means exist among different subareas, globally fitting a spatial regression model for observations over the study area may be not suitable. To alleviate deviations from spatial model assumptions, this paper proposes a methodology to locally select variables for each subarea based on a locally empirical conditional Akaike information criterion. In this situation, the global spatial dependence of observations is considered and the local characteristics of each subarea are also identified. It results in a composite spatial predictor which provides a more accurate spatial prediction for the response variables of interest in terms of the mean squared prediction errors. Further, the corresponding prediction variance is also evaluated based on a resampling method. Statistical inferences of the proposed methodology are justified both theoretically and numerically. Finally, an application of a mercury data set for lakes in Maine, USA is analyzed for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov V, Csáki F (eds) International symposium on information theory. Akademiai Kiádo, Budapest, pp 267–281

    Google Scholar 

  • Assuncão R (2003) Space varying coefficient models for small area data. Environmetrics 14:453–473

    Article  Google Scholar 

  • Borra S, Di Ciaccio A (2010) Measuring the prediction error: a comparison of cross-validation, bootstrap and covariance penalty methods. Comput Stat Data Anal 54:2976–2989

    Article  Google Scholar 

  • Bradley JR, Cressie N, Shi T (2015) Comparing and selecting spatial predictors using local criteria. Test 24:1–28

    Article  Google Scholar 

  • Chen CS, Huang HC (2012) Geostatistical model averaging based on conditional information criteria. Environ Ecol Stat 19:23–35

    Article  Google Scholar 

  • Chilés JP, Delfinder JP (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York

    Book  Google Scholar 

  • Cressie N, Johannesson G (2008) Fixed rank kriging for very large data sets. J R Stat Soc Ser B 70:209–226

    Article  Google Scholar 

  • Cressie N, Lahiri SN (1996) Asymptotics for REML estimation of spatial covariance parameters. J Stat Plan Inference 50:327–341

    Article  Google Scholar 

  • Davison A, Hinkley D (1997) Bootstrap methods and their application. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Efron B (2004) The estimation of prediction error: covariance penalties and cross-validation. J Am Stat Assoc 99:619–632

    Article  Google Scholar 

  • Efron B (2014) Estimation and accuracy after model selection. J Am Stat Assoc 109:991–1007

    Article  CAS  Google Scholar 

  • Fahrmeir L, Kneib T, Lang S (2004) Penalized structured additive regression for space-time data: a Bayesian perspective. Stat Sin 14:731–761

    Google Scholar 

  • Fouedjio F (2016) Second-order non-stationary modeling approaches for univariate geostatistical data. Stoch Environ Res Risk Assess. doi:10.1007/s00477-016-1274-y

    Google Scholar 

  • Furrer R, Genton MG, Nychka D (2006) Covariance tapering for interpolation of large spatial datasets. J Comput Graph Stat 15:502–523

    Article  Google Scholar 

  • García-Soidán P, Menezes R, Rubiños Ó (2014) Bootstrap approaches for spatial data. Stoch Environ Res Risk Assess 28:1207–1219

    Article  Google Scholar 

  • Ghosh D, Yuan Z (2009) An improved model averaging scheme for logistic regression. J Multivar Anal 100:1670–1681

    Article  CAS  Google Scholar 

  • Hoeting JA, Davis RA, Merton AA, Thompson SE (2006) Model selection for geostatistical models. Ecol Appl 16:87–98

    Article  Google Scholar 

  • Jiang W, Simon R (2007) A comparison of bootstrap methods and an adjusted bootstrap approach for estimating the prediction error in microarray classification. Stat Med 26:5320–5334

    Article  Google Scholar 

  • Kaufman CG, Schervish MJ, Nychka DW (2008) Covariance tapering for likelihood-based estimation in large spatial data sets. J Am Stat Assoc 103:1545–1555

    Article  CAS  Google Scholar 

  • Lloyd CD (2011) Local models for spatial analysis, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Matérn B (2013) Spatial variation. Springer, Berlin

    Google Scholar 

  • McGilchrist CA (1989) Bias of ML and REML estimators in regression models with ARMA errors. J Stat Comput Simul 32:127–136

    Article  Google Scholar 

  • Paciorek C, Schervish M (2006) Spatial modelling using a new class of nonstationary covariance functions. Environmetrics 17:483–506

    Article  Google Scholar 

  • Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58:545–554

    Article  Google Scholar 

  • Peck R, Haugh LD, Goodman A, (eds) (1998) Statistical case studies: a collaboration between academe and industry. In: ASA-SIAM series on statistics and applied probability 3 and 4

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  Google Scholar 

  • Shen X, Huang HC, Ye J (2004) Adaptive model selection and assessment for exponential family models. Technometrics 46:306–317

    Article  Google Scholar 

  • Tutmez B, Kaymak U, Tercan AE (2012) Local spatial regression models: a comparative analysis on soil contamination. Stoch Environ Res Risk Assess 26:1013–1023

    Article  Google Scholar 

  • Vaida F, Blanchard S (2005) Conditional Akaike information for mixed-effects models. Biometrika 92:351–370

    Article  Google Scholar 

  • Yang HD, Chen CS (2017) On estimation and prediction of geostatistical regression models via a corrected Stein’s unbiased risk estimator. Environmetrics 28:e2424. doi:10.1002/env.2424

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Editor, an associate editor, and two anonymous referees for their helpful comments and suggestions. This work was supported by the Ministry of Science and Technology of Taiwan under Grant MOST 104-2118-M-018-002-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Shu Chen.

Appendix

Appendix

Proof of Theorem 1 Taking the expectation on both sides of (14), we have the following results for any \(M\in \mathcal {M}\) and \(a=1,\dots ,A\).

$$\begin{aligned} E\left[ LCAIC(M;D_a;\varvec{\theta })\right]= & {} E\left\{ \sum _{\{\varvec{s}_i\in D_a\}}\left( Z(\varvec{s}_i)-\hat{S}_M(\varvec{s}_i;\varvec{\theta })\right) ^2+2\sigma _{\varepsilon }^2\sum _{\{i:\varvec{s}_i\in D_a\}} \left[ \varvec{H}_M(\varvec{\theta })\right] _{ii}\right\} \nonumber \\=\, & {} E\left\{ \sum _{\{\varvec{s}_i\in D_a\}}\left( Z(\varvec{s}_i)-\hat{S}_M(\varvec{s}_i;\varvec{\theta })\right) ^2\right\} +2\sigma _{\varepsilon }^2E\left\{ \sum _{\{i:\varvec{s}_i\in D_a\}}\left[ \varvec{H}_M(\varvec{\theta })\right] _{ii}\right\} \nonumber \\=\, & {} E\left\{ \sum _{\{\varvec{s}_i\in D_a\}}\left( Z(\varvec{s}_i)-S(\varvec{s}_i)+S(\varvec{s}_i)-\hat{S}_M(\varvec{s}_i;\varvec{\theta })\right) ^2\right\} +2\sigma _{\varepsilon }^2k_a\nonumber \\= & {} \sum _{\{\varvec{s}_i\in D_a\}}E\left[ \left( Z(\varvec{s}_i)-S(\varvec{s}_i)\right) ^2\right] +\sum _{\{\varvec{s}_i\in D_a\}}E\left[ \left( S(\varvec{s}_i)-\hat{S}_M(\varvec{s}_i; \varvec{\theta })\right) ^2\right] \nonumber \\&+2\sum _{\{\varvec{s}_i\in D_a\}}E\left[ \left( Z(\varvec{s}_i)-S(\varvec{s}_i)\right) \left( S(\varvec{s}_i)-\hat{S}_M(\varvec{s}_i;\varvec{\theta })\right) \right] +2\sigma _{\varepsilon }^2k_a\nonumber \\= & {} \sum _{\{\varvec{s}_i\in D_a\}}E\left[ \left( \varepsilon (\varvec{s}_i)\right) ^2\right] +\sum _{\{\varvec{s}_i\in D_a\}}E\left[ \left( S(\varvec{s}_i)-\hat{S}_M(\varvec{s}_i; \varvec{\theta })\right) ^2\right] \nonumber \\&+2\sum _{\{\varvec{s}_i\in D_a\}}E\left[ \varepsilon (\varvec{s}_i)S(\varvec{s}_i)\right] -2\sum _{\{\varvec{s}_i\in D_a\}}E\left[ \varepsilon (\varvec{s}_i)\hat{S}_M(\varvec{s}_i; \varvec{\theta })\right] +2\sigma _{\varepsilon }^2k_a\nonumber \\= & {} E\left[ \sum _{\{\varvec{s}_i\in D_a\}}\left( \hat{S}_M(\varvec{s}_i;\varvec{\theta })-S(\varvec{s}_i)\right) ^2\right] +n_a\sigma ^2_{\varepsilon }\nonumber \\&-2\sum _{\{\varvec{s}_i\in D_a\}}E\left[ \varepsilon (\varvec{s}_i)\hat{S}_M(\varvec{s}_i;\varvec{\theta })\right] +2\sigma _{\varepsilon }^2k_a\,, \end{aligned}$$
(34)

where \([\varvec{H}_M(\varvec{\theta })]_{ii}\) denotes the ith diagonal element of matrix \(\varvec{H}_M(\varvec{\theta })\), \(k_a\equiv \sum\nolimits _{\{i:\varvec{s}_i\in D_a\}}\left[ \varvec{H}_M(\varvec{\theta })\right] _{ii}\) is associated with subarea \(D_a\) and is a constant when model parameters are known, the fifth equality is based on \(Z(\varvec{s}_i)=S(\varvec{s}_i)+\varepsilon (\varvec{s}_i)\), and the sixth equality follows from \(\varepsilon (\varvec{s}_i)\sim N(0,\sigma ^2_{\varepsilon })\) and \(S(\varvec{s}_i)\) are independent and \(n_a>0\) represents the number of observations in the subarea \(D_a\). Therefore, the proof of (15) remains to show

$$\begin{aligned} \sum _{\{\varvec{s}_i\in D_a\}}E\left[ \varepsilon (\varvec{s}_i)\hat{S}_M(\varvec{s}_i;\varvec{\theta })\right] =\sigma _{\varepsilon }^2k_a\,. \end{aligned}$$

Because \(Z(\varvec{s}_i)=S(\varvec{s}_i)+\varepsilon (\varvec{s}_i)\), we have

$$\begin{aligned} \sum _{\{\varvec{s}_i\in D_a\}}E\left[ \varepsilon (\varvec{s}_i)\hat{S}_M(\varvec{s}_i;\varvec{\theta })\right]= & {} \sum _{\{\varvec{s}_i\in D_a\}}EE\left[ \varepsilon (\varvec{s}_i)\hat{S}_M(\varvec{s}_i;\varvec{\theta })\big |\varvec{S}\right] \nonumber \\= & {} \sum _{\{\varvec{s}_i\in D_a\}}E\left[ Cov\left( \varepsilon (\varvec{s}_i),\hat{S}_M(\varvec{s}_i;\varvec{\theta })\big |\varvec{S}\right) \right] \nonumber \\= & {} \sum _{\{\varvec{s}_i\in D_a\}}E\left[ Cov\left( Z(\varvec{s}_i),\hat{S}_M(\varvec{s}_i;\varvec{\theta })\big |\varvec{S}\right) -Cov\left( S(\varvec{s}_i),\hat{S}_M(\varvec{s}_i; \varvec{\theta })\big |\varvec{S}\right) \right] \nonumber \\= & {} \sum _{\{\varvec{s}_i\in D_a\}}E\left[ Cov\left( Z(\varvec{s}_i),\hat{S}_M(\varvec{s}_i;\varvec{\theta })\big |\varvec{S}\right) \right] , \end{aligned}$$
(35)

where the last equality follows from \(Cov\left( S(\varvec{s}_i),\hat{S}_M(\varvec{s}_i;\varvec{\theta })\big |\varvec{S}\right) =0\). In addition, because \(\varvec{Z}|\varvec{S}\sim N(\varvec{S},\sigma ^2_{\varepsilon }\varvec{I})\), we have the following result for all \(i=1,\dots ,n\).

$$\begin{aligned} \displaystyle \frac{\partial }{\partial S(\varvec{s}_i)}E\left( \hat{S}_M(\varvec{s}_i;\varvec{\theta })\big |\varvec{S}\right)= & {} (2\pi \sigma ^2_{\varepsilon })^{-n/2}\displaystyle \frac{\partial }{\partial S(\varvec{s}_i)}\int \hat{S}_M(\varvec{s}_i;\varvec{\theta }) \exp \left\{ -\sigma _{\varepsilon }^{-2}\displaystyle \sum ^{n}_{j=1}(z_j-S(\varvec{s}_j))^2/2\right\} d\varvec{z}\nonumber \\=\, & {} (2\pi \sigma ^2_{\varepsilon })^{-n/2}\sigma _{\varepsilon }^{-2}\nonumber \\&\times \displaystyle \int \hat{S}_M(\varvec{s}_i;\varvec{\theta })(z_i-S(\varvec{s}_i)) \exp \left\{ -\sigma _{\varepsilon }^{-2}\displaystyle \sum ^{n}_{j=1}(z_j-S(\varvec{s}_j))^2/2\right\} d\varvec{z}\nonumber \\=\, & {} \sigma _{\varepsilon }^{-2}E\left( \hat{S}_M(\varvec{s}_i;\varvec{\theta })(Z(\varvec{s}_i)-S(\varvec{s}_i))\big |\varvec{S}\right) \nonumber \\=\, & {} \sigma _{\varepsilon }^{-2}Cov\left( \hat{S}_M(\varvec{s}_i;\varvec{\theta }),Z(\varvec{s}_i)\big |\varvec{S}\right) . \end{aligned}$$
(36)

It follows from (11), (12), (35), and (36) that

$$\begin{aligned} \sum _{\{\varvec{s}_i\in D_a\}}E\left[ \varepsilon (\varvec{s}_i)\hat{S}_M(\varvec{s}_i;\varvec{\theta })\right]= & {} \sigma _{\varepsilon }^2\sum _{\{\varvec{s}_i\in D_a\}}E\left[ \displaystyle \frac{\partial }{\partial S(\varvec{s}_i)}E\left( \hat{S}_M(\varvec{s}_i; \varvec{\theta })\big |\varvec{S}\right) \right] \nonumber \\=\, & {} \sigma _{\varepsilon }^2\sum _{\{\varvec{s}_i\in D_a\}}E\left[ \displaystyle \frac{\partial }{\partial S(\varvec{s}_i)}E\left( \left[ \varvec{H}_M(\varvec{\theta })\right] _i \varvec{Z}\big |\varvec{S}\right) \right] \nonumber \\=\, & {} \sigma _{\varepsilon }^2\sum _{\{\varvec{s}_i\in D_a\}}E\left[ \displaystyle \frac{\partial }{\partial S(\varvec{s}_i)}\big (E\left( \left[ \varvec{H}_M(\varvec{\theta })\right] _i \varvec{S}\big |\varvec{S}\right) + E\left( \left[ \varvec{H}_M(\varvec{\theta })\right] _i \varvec{\varepsilon }\big |\varvec{S}\right) \big )\right] \nonumber \\=\, & {} \sigma _{\varepsilon }^2\sum _{\{\varvec{s}_i\in D_a\}}E\left[ \displaystyle \frac{\partial }{\partial S(\varvec{s}_i)}E\left( \left[ \varvec{H}_M(\varvec{\theta })\right] _i \varvec{S}\big |\varvec{S}\right) \right] \nonumber \\=\, & {} \sigma _{\varepsilon }^2\sum _{\{i:\varvec{s}_i\in D_a\}}\left[ \varvec{H}_M(\varvec{\theta })\right] _{ii}\nonumber \\=\, & {} \sigma _{\varepsilon }^2k_a, \end{aligned}$$
(37)

where \(\left[ \varvec{H}_M(\varvec{\theta })\right] _i\) denotes the ith row of matrix \(\varvec{H}_M(\varvec{\theta })\), the third equality is based on \(\varvec{Z}=\varvec{S}+\varvec{\varepsilon }\), and the fourth equality follows from \(E\left( \left[ \varvec{H}_M(\varvec{\theta })\right] _i \varvec{\varepsilon }\big |\varvec{S}\right) =0\). Thus, we obtain the desired result based on (34) and (37). This completes the proof.

Proof of Corollary 1 From the definitions of \(CAIC(M;\varvec{\theta })\) and \(LCAIC(M;D_a;\varvec{\theta })\) in (13) and (14), we know that

$$\begin{aligned} \displaystyle \sum _{a=1}^A LCAIC(M;D_a;\varvec{\theta })= & {} \displaystyle \sum _{a=1}^A \sum _{\left\{ \varvec{s}_i\in D_a\right\} }\left( Z(\varvec{s}_i)-\hat{S}_M(\varvec{s}_i;\varvec{\theta })\right) ^2 +2\sigma ^2_{\varepsilon }\displaystyle \sum _{a=1}^A\sum _{\left\{ i:\varvec{s}_i\in D_a\right\} }\left[ \varvec{H}_M(\varvec{\theta })\right] _{ii}\\= & {} \displaystyle \sum _{i=1}^n\left( Z(\varvec{s}_i)-\hat{S}_M(\varvec{s}_i;\varvec{\theta })\right) ^2 +2\sigma ^2_{\varepsilon }\displaystyle \sum _{i=1}^n\left[ \varvec{H}_M(\varvec{\theta })\right] _{ii}\\=\, & {} CAIC(M;\varvec{\theta }). \end{aligned}$$

Taking the expectation on both sides of the above equality, we have

$$\begin{aligned} E\left[ CAIC(M;\varvec{\theta })\right]= & {} \displaystyle \sum _{a=1}^A E\left[ LCAIC(M;D_a;\varvec{\theta })\right] \\= & {} \displaystyle \sum _{a=1}^A\left\{ E\left[ \sum _{\{\varvec{s}_i\in D_a\}}\left( \hat{S}_M(\varvec{s}_i;\varvec{\theta })-S(\varvec{s}_i)\right) ^2\right] +n_a\sigma _{\varepsilon }^2\right\} \\=\, & {} E\left[ \displaystyle \sum _{a=1}^A\sum _{\{\varvec{s}_i\in D_a\}}\left( \hat{S}_M(\varvec{s}_i;\varvec{\theta })-S(\varvec{s}_i)\right) ^2\right] +\sigma _{\varepsilon }^2\displaystyle \sum _{a=1}^A n_a\\=\, & {} E\left[ \displaystyle \sum _{i=1}^n\left( \hat{S}_M(\varvec{s}_i;\varvec{\theta })-S(\varvec{s}_i)\right) ^2\right] +n\sigma _{\varepsilon }^2, \end{aligned}$$

where the second equality is based on the result of (15) in Theorem 1, \(n_a>0\) is the number of observations in the subarea \(D_a\) for \(a=1,\dots ,A\), and \( \sum\nolimits _{a=1}^A n_a=n\) is the number of all observations in the study area D. Thus, we obtain the desired result, which completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CS., Chen, CS. A composite spatial predictor via local criteria under a misspecified model. Stoch Environ Res Risk Assess 32, 341–355 (2018). https://doi.org/10.1007/s00477-017-1438-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-017-1438-4

Keywords

Navigation