Effects of urbanization on the wood anatomy of Guarea guidonia, an evergreen species of the Atlantic Forest

Abstract

Key message

Landscape changes due to urbanization are reflected in the wood anatomy of Atlantic Forest species.

Abstract

Human activities have generated environmental alterations worldwide. Such impacts affect the development of trees and are related to a series of changes in wood anatomy. Thus, the analysis of wood can increase the understanding of how environmental alterations influence the hydraulic functioning of trees and their strategies for dealing with fluctuations in resources. To better understand how the modification of the landscape by anthropic actions can affect tree species, this work describes and compares the anatomical structure of Guarea guidonia, an evergreen species native to the Atlantic Forest, growing in a well-preserved forest, a peri-urban forest and an urban park in the Rio de Janeiro State. Wood samples from trees of each of these areas were analysed using optical microscopy and data were statistically compared among sites. Significant differences were observed among trees of different sites, such as smaller vessel element diameter, wider bands of axial parenchyma and wider rays in the urban park and greater frequency of fibres in the well-preserved forest. Guarea guidonia showed intraspecific variation related to the urbanization of the city of Rio de Janeiro, with a gradient of adaptations observed in relation to the proximity to the urban centre. The wood anatomy reflects the tissue reparation of the trees and indicates this species as bioindicator for biomonitoring studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Availability of data and material

The data presented in this study can be made available by the corresponding author upon justified request.

References

  1. Alves ES (1995) The effects of the pollution on wood of Cecropia glazioui (Cecropiaceae). IAWA J 16:69–80. https://doi.org/10.1163/22941932-90001391

    Article  Google Scholar 

  2. Alves PLCA, Oliva MA, Cambraia J, Sant’anna R (1990) Efeitos da chuva ácida simulada e de um solo de Cubatão (SP) sobre parâmetros relacionados com a fotossíntese e a transpiração de plantas de soja. Rev Bras Fisiol Veg 2:7–14

    Google Scholar 

  3. Alves ES, Giusti PM, Domingos M, Saldiva PHN, Guimarães ET, Lobo DJA (2001) Estudo anatômico foliar do clone híbrido 4430 de Tradescantia: alterações decorrentes da poluição aérea urbana. Rev Bras Bot 24:67–576. https://doi.org/10.1590/S0100-84042001000500012

    Article  Google Scholar 

  4. Alves ES, Tresmondi F, Longui EL (2008) Análise estrutural de folhas de Eugenia uniflora L. (Myrtaceae) coletadas em ambientes rural e urbano, SP, Brasil. Acta Bot Bras 22:241–248. https://doi.org/10.1590/S0102-33062008000100023

    Article  Google Scholar 

  5. Anderegg WRL, Berry JA, Smith DD, Sperry JS, Anderegg LDL, Field CB (2012) The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc Natl Acad Sci USA 109:233–237. https://doi.org/10.1073/pnas.1107891109

    Article  PubMed  Google Scholar 

  6. Araújo PCC, Gonçalves Júnior DR, Cardozo-Filho L, Marques JJ, Santos EJ (2018) Uso de carvão ativado na remoção de CO2. Sci Plena 14:1–9. https://doi.org/10.14808/sci.plena.2018.054201

    Article  Google Scholar 

  7. Arbellay E, Stoffel M, Sutherland EK, Smith KT, Falk DA (2014) Changes in tracheid and ray traits in fire scars of North American conifers and their ecophysiological implications. Ann Bot 114:223–232. https://doi.org/10.1093/aob/mcu112

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aubry A, Dinant S, Vilaine F, Bellini C, Le Hir R (2019) Lateral transport of organic and inorganic solutes. Plants 8:20. https://doi.org/10.3390/plants8010020

    CAS  Article  PubMed Central  Google Scholar 

  9. Baklanov A, Grimmond CSB, Carlson D et al (2018) A from urban meteorology, climate and environment research to integrated city services. Urb Clim 23:330–341. https://doi.org/10.1016/j.uclim.2017.05.004

    Article  Google Scholar 

  10. Barajas-Morales JB, Angeles AG, Sánchez PS (1997) Anatomia de maderas de Mexico: especies de una selva alta perennifolia. UNAM Inst Biol Publ Espec 16:7–126

    Google Scholar 

  11. Brodersen CR, McElrone AJ (2013) Maintenance of xylem network transport capacity: a review of embolism repair in vascular plants. Front Plant Sci 4:108. https://doi.org/10.3389/fpls.2013.00108

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA (2010) The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. Plant Physiol 154:1088–1095. https://doi.org/10.1104/pp.110.162396

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Bujokas WM (2009) Influência da poeira de fábrica de cimento nas características químicas da precipitação e no crescimento, nos teores de clorofila e na nutrição de Schinus terebinthifolius Raddi (Anacardiaceae). Thesis, Universidade Federal do Parana

  14. Bulbovas P, Camargo CZS, Domingos M (2015) Ryegrass cv. Lema and guava cv. Paluma biomonitoring suitability for estimating nutritional contamination risks under seasonal climate in Southeastern Brazil. Ecotox Envion Saf 118:149–157. https://doi.org/10.1016/j.ecoenv.2015.04.024

    CAS  Article  Google Scholar 

  15. Burger LM, Richter HG (1991) Anatomia da madeira. Nobel, São Paulo

    Google Scholar 

  16. Calaboni C, Martins MBG, Rossi ML (2013) Anatomia foliar e análise de EDX de Costus spiralis (Jacq.) Roscoe de ambiente impactado e não impactado do litoral de São Paulo. IHERINGIA Série Bot, Porto Alegre 68: 225–235. https://isb.emnuvens.com.br/iheringia/article/view/21. Accessed 15 Dec 2019

  17. Carlquist S (1977) Ecological factors in wood evolution: a floristic approach. Am J Bot 64:887–896. https://doi.org/10.1002/j.1537-2197.1977.tb11932.x

    Article  Google Scholar 

  18. Carlquist S (1988) Comparative wood anatomy. Systematic, ecological, and evolutionary aspects of dicotyledon wood. Springer-Verlag Berlin Heidelberg, Berlin

    Google Scholar 

  19. Carlquist S (2015) Living cells in wood. 1. Absence, scarcity, and histology of axial parenchyma as keys to function. Bot J Linn Soc 177:291–321. https://doi.org/10.1111/boj.12247

    Article  Google Scholar 

  20. Carlquist S (2018) “Primitive” wood characters are adaptive: examples from Paracryphiaceae. Aliso: J Syst Evol Bot 36:1–20. https://doi.org/10.5642/aliso.20183601.02

    Article  Google Scholar 

  21. Carreras R, Cuza AL, González R, Teruel J (2012) Árboles y maderas de Baracoa. Cuba El Tafane 84:616–1717

    Google Scholar 

  22. Carvalho FA, Braga JMA, Nascimento MT (2009) Estrutura da comunidade arbórea de fragmentos de Floresta Atlântica Ombrófila Submontana na região de Imbaú, município de Silva Jardim, Rio de janeiro, Brasil. Rodriguésia 60:695–710. https://doi.org/10.1590/2175-7860200960314

    Article  Google Scholar 

  23. Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12:351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.x

    Article  PubMed  Google Scholar 

  24. Choat B, Ball AC, Luly JG (2005) Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees 19:305–311. https://doi.org/10.1007/s00468-004-0392-1

    Article  Google Scholar 

  25. Clark DB, Clark DA, Oberbauer SF (2010) Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Glob Change Biol 16:747–759. https://doi.org/10.1111/j.1365-2486.2009.02004.x

    Article  Google Scholar 

  26. Coradin VTR, Muñiz GMB (1991) Normas de Procedimentos em Estudos de. I, Anatomia de Madeira Angiospermae. II. Gimnospermae. IBAMA. DIRPED, Laboratório de Produtos Florestais, Brasília

  27. Day SD, Wiseman PE, Dickinson SB, Harris R (2010) Tree root ecology in the urban environment and implications for a sustainable rhizosphere. Arboric Urb For 36: 193–205. http://html5.dcatalog.com/?docid=f37e8fcb-760c-48fa-a494-a74c010755ab&page=4. Accessed 12 Dec 2019

  28. De Micco V, Carrer M, Rathgeber BK et al (2019) From xylogenesis to tree rings: wood traits to investigate tree response to environmental changes. IAWA J 20:155–182. https://doi.org/10.1163/22941932-40190246

    Article  Google Scholar 

  29. Détienne P, Jacquet P (1983) Atlas d’identification des bois de l’amazonie et des regions voiseines. IAWA J 4:640

    Google Scholar 

  30. Dobrowolska I, Kurczynska EU, Dmuchowki W (2001) Anatomy of abscission zone of Betula pendula (Roth.) leaves from trees growing under different levels of pollution. Dendrobiology 46: 13–19. http://www.idpan.poznan.pl/content-dendrobiolgy/v46/402-4613-19. Accessed 5 Dec 2019

  31. Duan H, Duursma RA, Huang G et al (2014) Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. Plant Cell Environ 37:1598–1613. https://doi.org/10.1111/pce.12260

    CAS  Article  PubMed  Google Scholar 

  32. Dünisch O, Morais RR (2002) Regulation of xylem sap flow in an evergreen, a semi-deciduous, and a deciduous Meliaceae species from the Amazon. Trees 16:404–416. https://doi.org/10.1007/s00468-002-0182-6

    Article  Google Scholar 

  33. Dünisch O, Puls J (2003) Changes in content of reserve materials in an evergreen, a semideciduous, and a deciduous Meliaceae species from the Amazon. J Appl Bot 77:10–16

    Google Scholar 

  34. Evert RF (2013) Anatomia das plantas de Esau: meristemas, célula e tecidos do corpo da planta: sua estrutura e função e desenvolvimento. Blucher, São Paulo

    Google Scholar 

  35. Fahn A, Werker E, Baas P (1986) Wood anatomy and identification of trees and shrubs from Israel and adjacent regions. The Israel Academy of Sciences and Humanities, Jerusalem

    Google Scholar 

  36. Fedalto LC (1982) Estudos anatômicos do lenho de Bixa arboreae Huber. Acta Amazon 12:389–399. https://doi.org/10.1590/1809-43921982122389

    Article  Google Scholar 

  37. Fernandez ME, Gyenge JE, Urquiza MM, Varela S (2012) Adaptability to climate change in forestry species: drought effects on growth and wood anatomy of ponderosa pines growing at different competition levels. For Syst 21:162–173. https://doi.org/10.5424/fs/2112211-12586

    Article  Google Scholar 

  38. Fichtler E, Worbes M (2012) Wood anatomical variables in tropical trees and their relation to site conditions and individual tree morphology. IAWA J 33:119–140. https://doi.org/10.1163/22941932-90000084

    Article  Google Scholar 

  39. Fonti P, von Arx G, García-González I et al (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185:42–53. https://doi.org/10.1111/j.1469-8137.2009.03030.x

    Article  PubMed  Google Scholar 

  40. Fundação SOS, Mata Atlântica IMPE (2019) Atlas dos remanescentes florestais da Mata Atlântica: Relatório Técnico Período 2017–2018. https://www.sosma.org.br/wp-content/uploads/2019/05/Atlas-mata-atlantica_17-18.pdf. Accessed 15 Oct 2019

  41. Gianoli EA, Valladares F (2012) Studying phenotypic plasticity: the advantages of a broad approach. Biol J Linn Soc 105:1–7. https://doi.org/10.1111/j.1095-8312.2011.01793.x

    Article  Google Scholar 

  42. Gudipudi R, Fluschnik T, Ros AGC, Walther C, Kropp JP (2016) City density and CO2 efficiency. Energy Pol 91:352–361. https://doi.org/10.1016/j.enpol.2016.01.015

    CAS  Article  Google Scholar 

  43. Guimarães LE, Lee F (2010) Levantamento do perfil e avaliação da frota de veículos de passeio brasileira visando racionalizar as emissões de dióxido de carbono. Soc Nat 22:577–592. https://doi.org/10.1590/S1982-45132010000300013

    Article  Google Scholar 

  44. Gupta MC, Iqbal M (2005) Ontogenetic histological changes in the wood of mango (Mangifera indica L. cv Deshi) exposed to coal-smoke pollution. Environ Exp Bot 54:248–255. https://doi.org/10.1016/j.envexpbot.2004.09.003

    CAS  Article  Google Scholar 

  45. Heres AM, Camarero JJ, Lopéz BC, Martínez-Vilalta J (2014) Declining hydraulic performances and low carbon investments in tree rings predate Scots pine drought-induced mortality. Trees 28:1737–1750. https://doi.org/10.1007/s00468-014-1081-3

    Article  Google Scholar 

  46. Holbrook NM, Whitbeck JL, Mooney HA (1995) Drought responses of neotropical dry forest trees. In: Bullock SH, Mooney HA, Medina E (eds) Seasonally dry tropical forests. Cambridge University Press, Cambridge, pp 243–276

    Google Scholar 

  47. Honour SL, Bell NB, Ashenden TW, Cape JN, Power SA (2009) Responses of herbaceous plants to urban air pollution: effects on growth, phenology and leaf surface characteristics. Environ Pollut 157:1279–1286. https://doi.org/10.1016/j.envpol.2008.11.049

    CAS  Article  PubMed  Google Scholar 

  48. IAWA Committee (1989) IAWA list of microscopic features for hardwood Identification. IAWA Bull 10:219–332

    Article  Google Scholar 

  49. IBGE - Instituto Brasileiro de Geografia e Estatística (2019) Densidade demográfica. https://mapas.ibge.gov.br/tematicos/demografia.html. Accessed 3 Apr 2019

  50. INEA - Instituto Estadual do Ambiente (2013) Plano de manejo do Parque Estadual da Pedra Branca-RJ. http://www.inea.rj.gov.br/wp-content/uploads/2019/02/PEPB-PM.pdf. Accessed 6 September 2019

  51. Inoue MT, Reissmann CB (1993) Efeitos da poluição na fotossíntese, dimensões da folha, deposição de particulados e conteúdo de ferro e cobre em alfeneiro (Ugustrum lucidum) da arborização de Curitiba, PR. Floresta 21: 3-1.1

  52. IPCC - International Panel on Climate Change (2019) Climate change and Land - Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse gas fluxes in Terrestrial Ecosystems WMO. UNEP. https://www.ipcc.ch/srccl/. Acessed 3 Feb 2020

  53. Iqbal M, Zafa M, Abdin MZ (2000) Studies on anatomical, physiological and biochemical responses of trees to coals moke pollution around a thermal power plant. Department of Environment, Ministry of Environment and Forests. Government of India, New Delhi, Project Report

  54. Ivanauskas NM, Rodrigues RR, Nave AG (2002) Fitossociologia de um remanescente de floresta estacional semidecidual em Itatinga-SP, para fins de restauração de áreas degradadas. Rev Árvore 26:43–57

    Google Scholar 

  55. Jacobsen AL, Pratt RB, Ewers FW, Davis SD (2007) Cavitation resistance among 26 chaparral species of southern california. Ecol Monogr 77:99–115. https://doi.org/10.1890/05-1879

    Article  Google Scholar 

  56. Jesus MFS (2009) Análise dos efeitos de borda sobre a composição, dinâmica e estrutura da comunidade arbórea na Mata Atlântica da Reserva Biológica do Tinguá – RJ. Dissertation, Escola Nacional de Botânica Tropical

  57. Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  58. Juss A (1985) Anatomia descritiva da madeira de Guarea lessoniana. Ciênc Nat 7:63–71

    Article  Google Scholar 

  59. Keyimu M, Halik U, Li Z, Abliz A, Welp M (2018) Comparison of water consumption of three urban greening trees in a typical arid oasis city, northwest China. J Geogr Soc Berl 149:173–183. https://doi.org/10.12854/erde-2018-352

    Article  Google Scholar 

  60. Léon WJH (2013) Anatomía de la madera de 27 especies de Sapindales en el estado Barinas (Venezuela). Aspectos taxonômicos.  Revista Floresta Venezoalana 57:9–27

    Google Scholar 

  61. Lev-Yadun S, Aloni R (1993) Effect of wounding on the relations between vascular rays and vessels in Melia azedarach L. New Phytol 124:339–344. https://doi.org/10.1111/j.1469-8137.1993.tb03824.x

    Article  Google Scholar 

  62. Lev-Yadun S, Aloni R (1995) Differentiation of the ray system in woody plants. Bot Rev 61:45–84. https://doi.org/10.1007/BF02897151

    Article  Google Scholar 

  63. Lotfiomran N, Fromm J, Luinstra GA (2015) Effects of elevated CO2 and different nutrient supplies on wood structure of European beech (Fagus sylvatica) and gray poplar (Populus × canescens). IAWA J 36:84–97. https://doi.org/10.1163/22941932-00000087

    Article  Google Scholar 

  64. Lucena AJ, Rotunno Filho OC, França JRA (2012) A evolução da ilha de calor na Região Metropolitana do Rio de Janeiro. Revista Geonorte Edição Especial 2:8–21

    Google Scholar 

  65. Mahmoodzzafar, Hegazy SS, Aref IM, Iqbal M (2010) Anatomical changes in the wood of Syzygium cumini exposed to coal-smoke pollution. Sci Technol 8:959–964

    Google Scholar 

  66. Marengo JA (2007) Mudanças climáticas globais e seus efeitos sobre a biodiversidade. Caracterização do clima atual e definição das alterações climáticas para o território Brasileiro ao Longo do Século XXI. MMA, Brasília

    Google Scholar 

  67. Marques PA, Callado CH, Barros CF, Costa CG (2012) Variação Intraespecífica do Lenho de Eugenia uniflora L. em duas diferentes fitofisionomias do complexo vegetacional atlântico. Floresta Ambient 19:483–496. https://doi.org/10.4322/floram.2012.056

    Article  Google Scholar 

  68. Mazzoni-Viveiros SC, Trufem SFB (2004) Efeitos da poluição aérea e edáfica no sistema radicular de Tibouchina pulchra Cogn. (Melastomataceae) em área de Mata Atlântica: associações micorrízicas e morfologia. Rev Bras Bot 27:337–348. https://doi.org/10.1590/S0100-84042004000200013

    CAS  Article  Google Scholar 

  69. Mendez-Alonzo R, Paz H, Zuluaga RC, Rosell JA, Olson ME (2012) Coordinated evolution of leaf and stem economics in tropical dry forest trees. Ecology 9:2397–2406. https://doi.org/10.2307/41739311

    Article  Google Scholar 

  70. Metcalfe CR, Chalk L (1957) Anatomy of the dicotyledons. Leaves, stem, and wood in relation to taxonomy with notes on economic uses. Britain University Press, Oxford

    Google Scholar 

  71. MMA/IBAMA (2006) Plano de manejo: Reserva Biológica de Tinguá-RJ. http://www.icmbio.gov.br/portal/images/stories/imgs-unidades-servacao/rebio_tingua.pdf. Accessed 20 Apr 2019

  72. Moraes RM, Klumpp A, Furlan CM et al (2002) Tropical fruit trees as bioindicators of industrial air pollution in southeast Brazil. Environ Int 28:367–374. https://doi.org/10.1016/S0160-4120(02)00060-0

    CAS  Article  PubMed  Google Scholar 

  73. Morris H, Jansen S (2016) Secondary xylem parenchyma—from classical terminology to functional traits. IAWA J 37:1–15. https://doi.org/10.1163/22941932-20160117

    Article  Google Scholar 

  74. Morris H, Plavcova L, Cvecko P et al (2016) A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. New Phytol 209:1553–1565. https://doi.org/10.1111/nph.13737

    CAS  Article  PubMed  Google Scholar 

  75. Morris H, Gillingham MAF, Plavcová L et al (2018) Vessel diameter is related to amount and spatial arrangement of axial parenchyma in woody angiosperms. Plant Cell Environ 41:245–260. https://doi.org/10.1111/pce.13091

    CAS  Article  PubMed  Google Scholar 

  76. Nardini A, Lo Gullo MA, Salleo S (2011) Refilling embolized xylem conduits: Is it a matter of phloem unloading? Plant Sci 180:604–611. https://doi.org/10.1016/j.plantsci.2010.12.011

    CAS  Article  PubMed  Google Scholar 

  77. Nardini A, Battistuzzo M, Savi T (2013) Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytol 200:322–329. https://doi.org/10.1111/nph.12288

    CAS  Article  PubMed  Google Scholar 

  78. Nobre P (2011) Mudanças climáticas e desertificação: os desafios para o Estado Brasileiro. In: Lima RCC, Cavalcante AMB, Marin AMP (eds) Desertificação e Mudanças Climáticas no Semiárido Brasileiro, 1st edn. Instituto Nacional do Semiárido INS-PB, Campina Grande, pp 25–33

    Google Scholar 

  79. Oliveira VMS, Solórzano A, Sales GPS, Beauclair M, Scheerl-Ybert R (2013) Ecologia histórica de populações da carrapeta (Guarea guidonia (L.) Sleumer) em florestas de encosta do Rio de Janeiro. Pesq Bot 64:323–339

    Google Scholar 

  80. PBMC - Painel Brasileiro de Mudanças climáticas (2016) Impacto, vulnerabilidade e adaptação das cidades costeiras brasileiras às mudanças climáticas: relatório especial do painel brasileiro de mudanças climáticas. PBMC, COPPE - UFRJ, Rio de Janeiro

    Google Scholar 

  81. Peña JLM (2017) Diversidade florística, dendrologia e dendroecologia em florestas estacionais decíduas do Centro e Norte do Peru, Thesis, Universidade de São Paulo

  82. Pereira AR, Villa-Nova NA, Sediyama GC (1997) Evapotranspiração. FEALQ, Piracicaba

    Google Scholar 

  83. Pfautsch S, Renard J, Toiler MG, Salih A (2016) Climate determines vascular traits in the ecologically diverse genus Eucalyptus. Ecol Lett 19:240–248. https://doi.org/10.1111/ele.12559

    Article  PubMed  Google Scholar 

  84. Power MC, Lamichhane AP, Liao D et al (2018) The association of long-term exposure to particulate matter air pollution with brain MRI findings: the ARIC study. Environ Health Perspect 16:027009.1-027009.8. https://doi.org/10.1289/EHP2152

    Article  Google Scholar 

  85. Rahman M, Islam M, Gebrekirstos A, Bräuning A (2019) Trends in tree growth and intrinsic water-use efficiency in the tropics under elevated CO2 and climate change. Trees 33:623–640. https://doi.org/10.1007/s00468-019-01836-3

  86. Rainho RC, Correa SM, Mazzei JL, Aiub C (2013a) Genotoxicity of polycyclic aromatic hydrocarbons and nitro-derived in respirable airborne particulate matter collected from urban areas of Rio de Janeiro (Brazil). BioMed Res Int. https://doi.org/10.1155/2013/765352

  87. Rainho RC, Velho AMA, Corrêa MS, Mazzei LJ, Aiub FAC, Felzenszwalb I (2013b) Prediction of health risk due to polycyclic aromatic hydrocarbons present in urban air in Rio de Janeiro, Brazil. Genet Mol Res 12:3992–4002. https://doi.org/10.4238/2013.February.28.6

    CAS  Article  PubMed  Google Scholar 

  88. Rajput KS, Rao KS, Kim YS (2008) Cambial activity and wood anatomy in Prosopis spicigera (Mimosaceae) affected by combined air pollutants. IAWA J 29:209–219. https://doi.org/10.1163/22941932-90000180

    Article  Google Scholar 

  89. Sant’Anna-Santos BF, Azevedo AA (2007) Aspectos morfoanatômicos da fitotoxidez do flúor em duas espécies arbóreas tropicais. Rev Bras Biocienc 5:48–50

    Google Scholar 

  90. Santos CP (2005) Anatomia do lenho de Tibouchina pulchra Cogn. e Miconia cinnamomifolia (DC.) Naud (Melastomataceae) como registro temporal da poluição atmosférica proveniente do complexo industrial de Cubatão. Dissertation, Instituto de Botânica da Secretaria de Estado do Meio Ambiente

  91. Sass JE (1951) Botanical Microtechnique. The Iowa State College Press, Ames

    Google Scholar 

  92. Scarano FR, Ceotto P (2015) Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change. Biodivers Conser 24:2319–2331. https://doi.org/10.1007/s10531-015-0972-y

    Article  Google Scholar 

  93. Scholz A, Stein A, Choat B, Jansen S (2014) How drought and deciduousness shape xylem plasticity in three Costa Rican woody plant species. IAWA J 35:337–355. https://doi.org/10.1163/22941932-00000070

    Article  Google Scholar 

  94. Silva LC, Azevedo AA, Silva EAMS, Oliva MA (2000) Flúor em chuva simulada: sintomatologia e efeitos sobre a estrutura foliar e o crescimento de plantas arbóreas. Rev Bras Bot 23:385–393. https://doi.org/10.1590/S0100-84042000000400004

    Article  Google Scholar 

  95. Smith CW, Johnston MA, Lorentz SA (2001) The effect of soil compaction on the water retention characteristics of soils in forest plantations. S Afr J Plant Soil 18:87–97. https://doi.org/10.1080/02571862.2001.10634410

    Article  Google Scholar 

  96. Taiz L, Zeiger E, Moller IM, Murphy A (2017) Fisiologia e desenvolvimento vegetal. Artmed Porto, Alegre

    Google Scholar 

  97. Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, New York

    Google Scholar 

  98. Urquiza MVS (2008) Crescimento e idade de cinco espécies arbóreas do morro Santa Cruz, Corumbá-MS, Universidade Federal de Mato Grosso do Sul, Master Thesis, Mato Grosso do Sul

  99. Vasconcellos TJ, Callado CH (2020) Wood anatomy of Ceiba speciosa (A. St.-Hil.) Ravenna under urban pollution. IAWA J. https://doi.org/10.1163/22941932-00002109

    Article  Google Scholar 

  100. Vasconcellos TJ, Da Cunha M, Callado CH (2017) A comparative study of cambium histology of Ceiba speciosa (A. St.-Hil.) Ravenna (Malvaceae) under urban Pollution. Environ Sci Pollut Res 24:12049–12062. https://doi.org/10.1007/s11356-015-6012-3

    Article  Google Scholar 

  101. Vasconcellos TJ, Tomazello-Filho M, Callado CH (2019) Dendrochronology and dendroclimatology of Ceiba speciosa (A. St.-Hil.) Ravenna (Malvaceae) exposed to urban pollution in Rio de Janeiro city, Brazil. Dendrochronologia 53:104–113. https://doi.org/10.1016/j.dendro.2018.12.004

    Article  Google Scholar 

  102. Wang S, Ju A, Peñuelas J et al (2019) Urban-rural gradients reveal joint control of elevated CO2 and temperature on extended photosynthetic seasons. Nat Ecol Evol 3:1076–1085. https://doi.org/10.1038/s41559-019-0931-1

    Article  PubMed  Google Scholar 

  103. Weaver PL (1988) Guarea guidonia (L.) Sleumer. U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station, American Muskwood

    Google Scholar 

  104. Zar JH (2010) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

  105. Zimmermann MH (1983) Xylem structure and the ascent of sap. Springer-Verlag, Berlin

    Google Scholar 

Download references

Acknowledgements

We would like to thank Marcelo F. Castilhori and João Victor S. Castellar for the technical assistance and the employees of the Tinguá Biological Reserve; Pedra Branca State Park, Walter Nasseh of Quinta da Boa Vista Park, to the Instituto Estadual do Ambiente [E-07/002. 104921/208] and to the SisBio – Instituto Chico Mendes de Biodiversidade [21306-1] for autorizing research in the areas of environmental protection. To Dr. Gabriel U. A. Santos by the valuable revision of the manuscript and Laboratório de Anatomia Vegetal of the Universidade do Estado do Rio de Janeiro for supporting research and logistical assistance.

Funding

This study was financed by Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro [FAPERJ: Program Scholarship E-26/202.616/2018 and financial support E-26/ 101.459/2010] and Conselho Nacional de Desenvolvimento Científico e Tecnológico [CNPq: research grant 309080/2019-3].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cátia Henriques Callado.

Ethics declarations

Conflict of interest

 All authors declare that there is not any actual or potential conflict of interest including any financial, personal or other relationships with other people or organizations.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Buckeridge

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Silva, D.B., de Vasconcellos, T.J. & Callado, C.H. Effects of urbanization on the wood anatomy of Guarea guidonia, an evergreen species of the Atlantic Forest. Trees (2021). https://doi.org/10.1007/s00468-020-02080-w

Download citation

Keywords

  • Functional anatomy
  • Phenotypic plasticity
  • Urban ecology
  • Wood anatomical strategies
  • Wood anatomical traits