Skip to main content

Advertisement

Log in

Wood decay and the persistence of resprouting species in pyrophilic ecosystems

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Along a fire frequency gradient, we found a savanna tree species had the greatest below ground decay compartmentalization after coppicing as compared to other resprouting species located at mesic gradient positions.

Abstract

In pyrophilic ecosystems, woody plants are repeatedly injured or topkilled (i.e. aboveground tissue is killed) by frequent fires, and many woody species persist in these systems through resprouting. Yet, many vigorously resprouting plants appear unable to persist in frequently burned landscapes. The success of resprouters has generally been attributed to the ability of these plants to store and remobilize carbohydrate reserves. For resprouting species, persistence might not be determined by resource reserves, but rather by their ability to prevent spread of wood decay after injury, there by maintaining the integrity of belowground organs. We hypothesized that species that persist in frequently burned areas are most capable of containing the extent of wood decay. To this end, we measured variables previously identified to limit the extent of decay in woody plants, including plant size, wood density, and lignin and extractable phenolic concentrations, on five woody species that occur along a fire frequency gradient in the Sandhills physiographic region of North Carolina, USA. We induced topkill by coppicing 19–20 individuals of each species. At 9 and 19 months after coppicing, we harvested the root crowns of half of the individuals per species. We found that the most fire-tolerant species (Quercus laevis) had the least amount of wood decay overall and the greatest wood density and lignin and phenolic concentrations. Q. laevis also had the least decay at both the 9- and 19-month post-coppicing harvest dates. We suggest that wood decay compartmentalization is a potentially overlooked aspect of resprouting success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amusant N, Beauchene J, Fournier M, Janin G, Thevenon M-F (2004) Decay resistance in Dicorynia guianensis Amsh.: analysis of inter-tree and intra-tree variability and relations with wood colour. Ann For Sci 61:373–380. doi:10.1051/forest:2004030

    Article  Google Scholar 

  • Balch JK, Nepstad DC, Curran LM, Brando PM, Portela O, Guilherme P, Reuning-Scherer JD, de Carvalho O (2011) Size, species, and fire behavior predict tree and liana mortality from experimental burns in the Brazilian Amazon. For Ecol Manage 261:68–77. doi:10.1016/j.foreco.2010.09.029

    Article  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300. doi:10.2307/2346101

    Google Scholar 

  • Blanchette R (1992) Anatomical responses of xylem to injury and invasion by fungi. In: Blanchette R, Biggs A (eds) Defense mechanisms of woody plants against fungi. Springer, Berlin Heidelberg, pp 76–95

    Chapter  Google Scholar 

  • Boddy L, Rayner ADM (1983) Origins of decay in living deciduous trees: the role of moisture content and a re-appraisal of the expanded concept of tree decay. New Phytol 94:623–641. doi:10.1111/j.1469-8137.1983.tb04871.x

    Article  Google Scholar 

  • Bond WJ, Midgley JJ (2001) Ecology of sprouting in woody plants: the persistence niche. Trends Ecol Evol 16:45–51. doi:10.1016/S0169-5347(00)02033-4

    Article  CAS  PubMed  Google Scholar 

  • Brinson MM (1991) Landscape properties of pocosins and associated wetlands. Wetlands 11:441–465. doi:10.1007/BF03160761

    Article  Google Scholar 

  • Campbell MM, Sederoff RR (1996) Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants). Plant Physiol 110:3–13. doi:10.1104/pp.110.1.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter LT, Pezeshki SR, Shields FD (2008) Responses of nonstructural carbohydrates to shoot removal and soil moisture treatments in Salix nigra. Trees 22:737–748. doi:10.1007/s00468-008-0234-7

    Article  CAS  Google Scholar 

  • Cartwright KSG (1941) The variability in resistance to decay of the heartwood of home-grown western red cedar (Thuja plicata D. Don) and its relation to position in the log. Forestry 15:65–75. doi:10.1093/forestry/15.1.65

    Article  CAS  Google Scholar 

  • Christensen NL (2000) Vegetation of the southeastern coastal plain. In: Barbour M, Billings W (eds) North American terrestrial vegetation, 2nd edn. Camrbridge University Press, New York, pp 397–448

    Google Scholar 

  • Coleman HD, Canam T, Kang K-Y, Ellis DD, Mansfield SD (2007) Over-expression of UDP-glucose pyrophosphorylase in hybrid poplar affects carbon allocation. J Exp Bot 58:4257–4268. doi:10.1093/jxb/erm287

    Article  CAS  PubMed  Google Scholar 

  • Coleman HD, Yan J, Mansfield SD (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci USA 106:13118–13123. doi:10.1073/pnas.0900188106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Allison SD, Bauhus JJ, Eggleton P, Preston CM, Scarff F, Weedon JT, Wirth C, Zanne AE (2009) Plant traits and wood fates across the globe: rotted, burned, or consumed? Glob Change Biol 15:2431–2449. doi:10.1111/j.1365-2486.2009.01916.x

    Article  Google Scholar 

  • Cowling E (1961) Comparative biochemistry of the decay of sweetgum sapwood by white-rot and brown-rot fungi. Technical Bulletin No. 1258. USDA Forest Service, Forest Product Laboratory, Madison, WI

  • de Mendiburu F (2015) Agricolae: statistical procedures for agricultural research. R package version 1.2-3. http://tarwi.lamolina.edu.pe/~fmendiburu. Accessed 10 Dec 2015

  • Deflorio G, Johnson C, Fink S, Schwarze FWMR (2008) Decay development in living sapwood of coniferous and deciduous trees inoculated with six wood decay fungi. For Ecol Manag 255:2373–2383. doi:10.1016/j.foreco.2007.12.040

    Article  Google Scholar 

  • Ellmore GS, Zanne AE, Orians CM (2006) Comparative sectoriality in temperate hardwoods: hydraulics and xylem anatomy. Bot J Linn Soc 150:61–71. doi:10.1111/j.1095-8339.2006.00510.x

    Article  Google Scholar 

  • Enright NJ, Fontaine JB, Westcott VC, Lade JC, Miller BP (2011) Fire interval effects on persistence of resprouter species in Mediterranean-type shrublands. Plant Ecol 212:2071–2083. doi:10.1007/s11258-011-9970-7

    Article  Google Scholar 

  • Fensham RJ, Fairfax RJ, Butler DW, Bowman DMJS (2003) Effects of fire and drought in a tropical eucalypt savanna colonized by rain forest. J Biogeogr 30:1405–1414. doi:10.1046/j.1365-2699.2003.00934.x

    Article  Google Scholar 

  • Fowler C, Konopik E (2007) The history of fire in the southern United States. Hum Ecol Rev 14:165–176

    Google Scholar 

  • Frost C (1998) Presettlement fire frequency regimes of the United States: a first approximation. In: Pruden T, Brennan L (eds) Fire in ecosystem management: shifting the paradigm from suppression to prescription. Tall Timbers Research Station, Tallahassee, pp 70–81

    Google Scholar 

  • Gershenzon J, Mabry TJ (1983) Secondary metabolites and the higher classification of angiosperms. Nord J Bot 3:5–34. doi:10.1111/j.1756-1051.1983.tb01442.x

    Article  CAS  Google Scholar 

  • Gierlinger N, Jacques D, Wimmer R, Paques LE, Schwanninger M (2004) Heartwood extractives and lignin content of different larch species (Larix sp.) and relationships to brown-rot decay-resistance. Trees-Struct Funct 18:230–236. doi:10.1007/s00468-003-0300-0

    Article  CAS  Google Scholar 

  • Gilliam F, Platt W (1999) Effects of long-term fire exclusion on tree species composition and stand structure in an old-growth Pinus palustris (longleaf pine) forest. Plant Ecol 1920:15–26. doi:10.1023/A:1009776020438

    Article  Google Scholar 

  • Goorman R, Bartual A, Paula S, Ojeda F (2011) Enhancement of photosynthesis in post-disturbance resprouts of two co-occurring Mediterranean Erica species. Plant Ecol 212:2023–2033. doi:10.1007/s11258-011-9967-2

    Article  Google Scholar 

  • Guariguata MR, Gilbert GS (1996) Interspecific variation in rates of trunk wound closure in a Panamanian lowland forest. Biotropica 28:23–29. doi:10.2307/2388768

    Article  Google Scholar 

  • Harju A, Venäläinen M, Anttonen S (2003) Chemical factors affecting the brown-rot decay resistance of Scots pine heartwood. Trees 17:263–268. doi:10.1007/s00468-002-0233-z

    CAS  Google Scholar 

  • Hoffmann WA, Geiger EL, Gotsch SG, Rossatto DR, Silva LCR, Lau OL, Haridasan M, Franco AC (2012) Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecol Lett 15:759–768. doi:10.1111/j.1461-0248.2012.01789.x

    Article  PubMed  Google Scholar 

  • Hothorn T, van de Wiel K, Winell H, Zeileis A (2015) coin: conditional inference procedures in a permutation test framework. R package version 1.1-2. http://coin.r-forge.r-project.org/. Accessed 10 Dec 2015

  • Ivester AH, Leigh DS (2003) Riverine dunes on the Coastal Plain of Georgia, USA. Geomorphology 51:289–311. doi:10.1016/S0169-555X(02)00240-4

    Article  Google Scholar 

  • Just MG, Hohmann MG, Hoffmann WA (2016) Where fire stops: vegetation structure and microclimate influence fire spread along an ecotonal gradient. Plant Ecol 217:631–644. doi:10.1007/s11258-015-0545-x

    Article  Google Scholar 

  • Kaufert FH (1933) Fire and decay injury in the southern bottomland hardwoods. J For 31:64–67

    Google Scholar 

  • Kim J, Ghimire B, Shin H, Lee K (2012) Comparison of phenolic compounds content in indeciduous Quercus species. J Med Plants Res 6:5228–5239. doi:10.5897/JMPR12.135

    Article  CAS  Google Scholar 

  • Klimešová J, Klimeš L (2007) Bud banks and their role in vegetative regeneration—a literature review and proposal for simple classification and assessment. Perspect Plant Ecol Evol Syst 8:115–129. doi:10.1016/j.ppees.2006.10.002

    Article  Google Scholar 

  • Kozlowski T, Winget C (1963) Patterns of water movement in forest trees. Bot Gaz 124:301–311

    Article  Google Scholar 

  • Langley JA, Drake BG, Hungate BA (2002) Extensive belowground carbon storage supports roots and mycorrhizae in regenerating scrub oaks. Oecologia 131:542–548. doi:10.1007/s00442-002-0932-6

    Article  Google Scholar 

  • Larjavaara M, Muller-Landau HC (2010) Rethinking the value of high wood density. Funct Ecol 24:701–705. doi:10.1111/j.1365-2435.2010.01698.x

    Article  Google Scholar 

  • Lashley MA, Chitwood MC, Prince A, Elfelt MB, Kilburg EL, DePerno CS, Moorman CE (2014) Subtle effects of a managed fire regime: a case study in the longleaf pine ecosystem. Ecol Indic 38:212–217. doi:10.1016/j.ecolind.2013.11.006

    Article  Google Scholar 

  • Lashley M, Chitwood M, Harper C, DePerno C, Moorman C (2015) Variability in fire prescriptions to promote wildlife foods in the longleaf pine ecosystem. Fire Ecol 11:62–79. doi:10.4996/fireecology.1103062

    Google Scholar 

  • Lawes MJ, Adie H, Russell-Smith J, Murphy B, Midgley JJ (2011) How do small savanna trees avoid stem mortality by fire? The roles of stem diameter, height and bark thickness. Ecosphere 2:art42. doi:10.1890/ES10-00204.1

    Article  Google Scholar 

  • Leben C (1985) Wound occlusion and discolouration columns in red maple. New Phytol 99:485–490. doi:10.1111/j.1469-8137.1985.tb03675.x

    Article  Google Scholar 

  • Lonsdale D, Pautasso M, Holdenrieder O (2008) Wood-decaying fungi in the forest: conservation needs and management options. Eur J For Res 127:1–22. doi:10.1007/s10342-007-0182-6

    Article  Google Scholar 

  • Lowell EC, Willits SA, Krahmer RL (1992) Deterioration of fire-killed and fire-damaged timber in the western United States. General technical report PNW-GTR-292. USDA Forest Service, Pacific Northwest Research Station, Portland, OR, p 27

  • McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–1059. doi:10.1104/pp.110.170704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michaletz ST, Johnson EA (2008) A biophysical process model of tree mortality in surface fires. Can J For Res 38:2013–2029. doi:10.1139/X08-024

    Article  Google Scholar 

  • Moreira B, Tormo J, Pausas JG (2012) To resprout or not to resprout: factors driving intraspecific variability in resprouting. Oikos 121:1577–1584. doi:10.1111/j.1600-0706.2011.20258.x

    Article  Google Scholar 

  • Oliver CD (1978) Subsurface geologic formations and site variation upper sand hills of South Carolina. J For 76:352–354. doi:10.1111/j.1439-0329.1990.tb01140.x

    Google Scholar 

  • Olson MS, Platt WJ (1995) Effects of habitat and growing season fires on resprouting of shrubs in longleaf pine savannas. Vegetatio 119:101–118. doi:10.1007/BF00045593

    Article  Google Scholar 

  • Outcalt KW (2008) Lightning, fire and longleaf pine: using natural disturbance to guide management. For Ecol Manag 255:3351–3359. doi:10.1016/j.foreco.2008.02.016

    Article  Google Scholar 

  • Pearce B (1990) Occurrence of decay-associated xylem suberization in a range of woody species. Eur J For Pathol 20:275–289

    Article  Google Scholar 

  • Poorter L, Kitajima K, Mercado P, Chubiña J, Melgar I, Prins H (2010) Resprouting as a persistence strategy of tropical forest trees: relations with carbohydrate storage and shade tolerance. Ecology 91:2613–2627. doi:10.1890/09-0862.1

    Article  PubMed  Google Scholar 

  • Poorter L, Mcneil A, Hurtado VH, Prins HHT, Putz FE (2014) Bark traits and life-history strategies of tropical dry- and moist forest trees. Funct Ecol 28:232–242. doi:10.1111/1365-2435.12158

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 10 Oct 2015

  • Romero C, Bolker BM (2008) Effects of stem anatomical and structural traits on responses to stem damage: an experimental study in the Bolivian Amazon. Can J For Res 38:611–618. doi:10.1139/X07-205

    Article  Google Scholar 

  • Romero C, Bolker BM, Edwards CE (2009) Stem responses to damage: the evolutionary ecology of Quercus species in contrasting fire regimes. New Phytol 182:261–271. doi:10.1111/j.1469-8137.2008.02733.x

    Article  PubMed  Google Scholar 

  • Sánchez-Rangel JC, Benavides J, Heredia JB, Cisneros-Zevallos L, Jacobo-Velázquez DA (2013) The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Anal Methods 5:5990. doi:10.1039/c3ay41125g

    Article  Google Scholar 

  • Schafale M (2012) Guide to the natural communities of North Carolina: fourth approximation. Department of Environment, Health, and Natural Resources, North Carolina Natural Heritage Program, Division of Parks and Recreation, Raleigh, NC

  • Schafer JL, Just MG (2014) Size dependency of post-disturbance recovery of multi-stemmed resprouting trees. PLoS One 9:e105600. doi:10.1371/journal.pone.0105600

    Article  PubMed  PubMed Central  Google Scholar 

  • Schafer JL, Breslow BP, Just MG, Hohmann MG, Hollingsworth SN, Swatling-Holcomb SL, Hoffmann WA (2013) Current and historical variation in wiregrass (Aristida stricta) abundance and distribution is not detectable from soil δ13C measurements in longleaf pine (Pinus palustris) savannas. Castanea 78:28–36. doi:10.2179/12-021

    Article  Google Scholar 

  • Schafer JL, Breslow BP, Hohmann MG, Hoffmann WA (2015) Relative bark thickness is correlated with tree species distributions along a fire frequency gradient. Fire Ecol 11:74–87. doi:10.4996/fireecology.1101074

    Article  Google Scholar 

  • Scheffer TC, Cowling EB (1966) Natural resistance of wood to microbial deterioration. Annu Rev Phytopathol 4:147–168. doi:10.1146/annurev.py.04.090166.001051

    Article  CAS  Google Scholar 

  • Schoonenberg T, Pinard M, Woodward S (2003) Responses to mechanical wounding and fire in tree species characteristic of seasonally dry tropical forest of Bolivia. Can J For Res 33:330–338. doi:10.1139/x02-172

    Article  Google Scholar 

  • Schutz AEN, Bond WJ, Cramer MD (2009) Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna. Oecologia 160:235–246. doi:10.1007/s00442-009-1293-1

    Article  PubMed  Google Scholar 

  • Shigo A (1984) Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves. Annu Rev Phytopathol 22:189–214. doi:10.1146/annurev.py.22.090184.001201

    Article  Google Scholar 

  • Shigo A, Hillis W (1973) Heartwood, discolored wood, and microorganisms in living trees. Annu Rev Phytopathol 1971. doi:10.1146/annurev.py.11.090173.001213

    Google Scholar 

  • Skyba O, Douglas CJ, Mansfield SD (2013) Syringyl-rich lignin renders poplars more resistant to degradation by wood decay fungi. Appl Environ Microbiol 79:2560–2571. doi:10.1128/AEM.03182-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KT (1997) Phenolics and compartmentalization in the sapwood of broad-leaved trees. In: Dashek W (ed) Methods in plant biochemistry and molecular biology. CRC Press, Boca Raton, pp 189–198

    Google Scholar 

  • Smith KT (2006) Compartmentalization today. Arboric J 29:173–184. doi:10.1080/03071375.2006.9747457

    Article  Google Scholar 

  • Smith KT (2008) An organismal view of dendrochronology. Dendrochronologia 26:185–193. doi:10.1016/j.dendro.2008.06.002

    Article  Google Scholar 

  • Smith KT, Sutherland EK (1999) Fire-scar formation and compartmentalization in oak. Can J For Res Can Rech For 29:166–171. doi:10.1139/cjfr-29-2-166

    Article  Google Scholar 

  • Smith R, Craig H, Chu D (1970) Fungal deterioration of second-growth Douglas-fir logs in coastal British Columbia. Can J Bot 48:1541–1551. doi:10.1139/b70-231

    Article  Google Scholar 

  • Sorrie BA, Gray JB, Crutchfield PJ (2006) The vascular flora of the longleaf pine ecosystem of Fort Bragg and Weymouth Woods, North Carolina. Castanea 71:129–161. doi:10.2179/05-02.1

    Article  Google Scholar 

  • Stambaugh MC, Guyette RP, Marschall JM (2011) Longleaf pine (Pinus palustris Mill.) fire scars reveal new details of a frequent fire regime. J Veg Sci 22:1094–1104. doi:10.1111/j.1654-1103.2011.01322.x

    Article  Google Scholar 

  • Sutherland EK, Smith KT (2000) Resistance is not futile: The response of hardwoods to fire-caused wounding. In: Yaussy D (ed) Proceedings: workshop on fire, people, and the central hardwoods landscape. General technical report NE-274. USDA, Forest Service, Northeastern Research Station, Newton Square, PA, pp 111–115

  • Technical Association of the Pulp and Paper Industry (1991) Tappi useful method UM-250: acid-soluble lignin in wood and pulp, Atlanta, GA

  • Thorn AM, Orians CM (2011) Modeling the influence of differential sectoriality on the photosynthetic responses of understory saplings to patchy light and water availability. Trees-Struct Funct 25:833–845. doi:10.1007/s00468-011-0559-5

    Article  Google Scholar 

  • Van Geffen KG, Poorter L, Sass-Klaassen U, Van Logtestijn RSP, Cornelissen JHC (2010) The trait contribution to wood decomposition rates of 15 neotropical tree species. Ecology 91:3686–3697. doi:10.1890/09-2224.1

    Article  PubMed  Google Scholar 

  • Vek V, Oven P, Humar M (2013) Phenolic extractives of wound-associated wood of beech and their fungicidal effect. Int Biodeterior Biodegrad 77:91–97. doi:10.1016/j.ibiod.2012.10.013

    Article  CAS  Google Scholar 

  • Watson G (2008) Discoloration and decay in severed tree roots. Arboric Urban For 34:260–264

    Google Scholar 

  • Weakley AS, Schafale MP (1991) Classification of pocosins of the Carolina Coastal Plain. Wetlands 11:355–375. doi:10.1007/BF03160756

    Article  Google Scholar 

  • Wells BW, Shunk IV (1931) The vegetation and habitat factors of the coarser sands of the North Carolina Coastal Plain: an ecological study. Ecol Monogr 1:465–520. doi:10.2307/1943080

    Article  Google Scholar 

  • Whitney RD (1997) Relationship between decayed roots and aboveground decay in three conifers in Ontario. Can J For Res 27:1217–1221. doi:10.1139/x97-056

    Article  Google Scholar 

  • Witzell J, Martín JA (2008) Phenolic metabolites in the resistance of northern forest trees to pathogens-past experiences and future prospects. Can J For Res 38:2711–2727. doi:10.1139/X08-112

    Article  Google Scholar 

  • Wong A, Wilkes J, Heather W (1983) Influence of wood density and extractives content on the decay resistance of the heartwood of Eucalyptus delegatensis R.T. Baker. J Inst Wood Sci 9:261–263

    Google Scholar 

  • Yamada T (2001) Defense mechanisms in the sapwood of living trees against microbial infection. J For Res 6:127–137. doi:10.1007/BF02767083

    Article  CAS  Google Scholar 

  • Zanne AE, Sweeney K, Sharma M, Orians CM (2006) Patterns and consequences of differential vascular sectoriality in 18 temperate tree and shrub species. Funct Ecol 20:200–206. doi:10.1111/j.1365-2435.2006.01101.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank A. Ballard, B. Breslow, S. Byerly, D. Metiver, P. Mulvaney, A. Parot, and R. Sanders for research assistance. We wish to thank the Fort Bragg Forestry and Endangered Species branches for logistical support. This research was supported by a cooperative agreement between the US Army Engineer Research and Development Center and North Carolina State University (W9132T-11-2-0007 to W. A. H.). M. G. J. received support from a Southeast Climate Science Center fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Just.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Communicated by W. Oßwald.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 32 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Just, M.G., Schafer, J.L., Hohmann, M.G. et al. Wood decay and the persistence of resprouting species in pyrophilic ecosystems. Trees 31, 237–245 (2017). https://doi.org/10.1007/s00468-016-1477-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1477-3

Keywords

Navigation