Skip to main content
Log in

Variation in carbohydrates and screening of related differential proteins during the seed germination of Magnolia sieboldii K. Koch

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Key message

This paper focuses on carbohydrate metabolism of Magnolia sieboldii during seed germination by proteomics. 10 differentially accumulated proteins were found. Glycolysis is the most important metabolic pathways.

Abstract

Magnolia sieboldii K. Koch was selected as our research object. M. sieboldii seeds were initially soaked in clean water for 72 h and then stratified in wet sand with a seed-to-sand ratio of 1:3 at a fluctuating temperature. The relationship between carbohydrate metabolism and seed germination, and the localization of related proteins in metabolic pathways were investigated through seed embryo development, seed anatomical structure, carbohydrate change, and differentially accumulated protein analysis during seed stratification. On the basis of the results, we can divide seed dormancy and germination into three stages: unchanging embryo length (phase I), slow stretching phase (phase II), and rapid elongation phase (phase III). Two-dimensional electrophoresis revealed that 67 differentially accumulated proteins were obtained in four seed protein samples corresponding to the four key stages during the stratification of M. sieboldii seeds (0, 45, 90, and 110 days of stratification). Of the 67 differentially accumulated proteins, 7 were related to carbon metabolism and localized in 10 metabolic pathways and 4 were located in the glycolysis/gluconeogenesis pathway and upregulated in the early stage of seed germination, as indicated by KEGG metabolic pathway analysis. Thus, energy for seed germination was provided by glycolysis/gluconeogenesis in this stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Balbuena TS, Jo L, Pieruzzi FP, Dias LL, Silveira V, Santa-Catarina C, Junqueira M, Thelen JJ, Shevchenko A, Floh EI (2011) Differential proteome analysis of mature and germinated embryos of Araucaria angustifolia. Phytochemistry 72:302–311

    Article  CAS  PubMed  Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds: ecology, biogeography, and evolution of dormancy and germination. Crop Sci 40:334

    Google Scholar 

  • Bewley JD, Bradford K, Hilhorst H (2012) Seeds: physiology of development, germination and dormancy. Springer, Berlin

    Google Scholar 

  • Błaszczak W, Doblado R, Frias J, Vidal-Valverde C, Sadowska J, Fornal J (2007) Microstructural and biochemical changes in raw and germinated cowpea seeds upon high-pressure treatment. Food Res Int 40:415–423

    Article  Google Scholar 

  • Bønsager BC, Finnie C, Roepstorff P, Svensson B (2007) Spatio-temporal changes in germination and radical elongation of barley seeds tracked by proteome analysis of dissected embryo, aleurone layer, and endosperm tissues. Proteomics 7:4528–4540

    Article  PubMed  Google Scholar 

  • Catusse J, Meinhard J, Job C, Strub JM, Fischer U, Pestsova E, Westhoff P, Van Dorsselaer A, Job D (2011) Proteomics reveals potential biomarkers of seed vigor in sugarbeet. Proteomics 11:1569–1580

    Article  CAS  PubMed  Google Scholar 

  • Funato Y, Hayashi T, Irino Y, Takenawa T, Miki H (2013) Nucleoredoxin regulates glucose metabolism via phosphofructokinase 1. Biochem Bioph Res Co 440:737–742

    Article  CAS  Google Scholar 

  • Galperin MY, Koonin EV, Bairoch A (1998) A superfamily of metalloenzymes unifies phosphopentomutase and cofactor-independent phosphoglycerate mutase with alkaline phosphatases and sulfatases. Protein Sci 7:1829–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol 137:1397–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He D, Han C, Yao J, Shen S, Yang P (2011) Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach. Proteomics 11:2693–2713

    Article  CAS  PubMed  Google Scholar 

  • Horemans N, Potters G, De Wilde L, Caubergs RJ (2003) Dehydroascorbate uptake activity correlates with cell growth and cell division of tobacco bright yellow-2 cell cultures. Plant Physiol 133:361–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Møller IM, Song S (2012) Proteomics of desiccation tolerance during development and germination of maize embryos. J Proteom 75:1247–1262

    Article  CAS  Google Scholar 

  • Keller B, Templeton MD, Lamb CJ (1989) Specific localization of a plant cell wall glycine-rich protein in protoxylem cells of the vascular system. Proc Natl Acad Sci 86:1529–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowles JR, Albery WJ (1977) Perfection in enzyme catalysis: the energetics of triosephosphate isomerase. Acc Chem Res 10:105–111

    Article  CAS  Google Scholar 

  • Lan T, Gao J, Zeng Q (2013) Genome-wide analysis of the LEA (late embryogenesis abundant) protein gene family in Populus trichocarpa. Tree Genet Genom 9:253–264

    Article  Google Scholar 

  • Leterrier M, Barroso JB, Palma JM, Corpas FJ (2012) Cytosolic NADP-isocitrate dehydrogenase in Arabidopsis leaves and roots. Biol Plant 56:705–710

    Article  CAS  Google Scholar 

  • Lu X, Wang N, Li T, Han Y, Yang J (2008) Effect of different soaking and accelerating germination disposals on forced germination of M. sieboldii k. koch seeds. J Northwest A & F University (Natural Science Edition) 5: 24

  • Lu X, Zhang X, Mei M, Liu G, Ma B (2016) Proteomic analysis of Magnolia sieboldii K. Koch seed germination. J Proteom 133:76–85

    Article  CAS  Google Scholar 

  • Luo X, Huang Q (2011) Relationships between leaf and stem soluble sugar content and tuberous root starch accumulation in cassava. J Agr Sci 3:64

    Google Scholar 

  • Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068

    CAS  PubMed  Google Scholar 

  • Major W, Roberts EH (1968) Dormancy in cereal seeds II. The nature of the gaseous exchange in imbibed barley and rice seeds. J Exp Bot 19:90–101

    Article  CAS  Google Scholar 

  • Muñoz-Clares RA, Riveros-Rosas H, Garza-Ramos G, González-Segura L, Mújica-Jiménez C, Julián-Sánchez A (2014) Exploring the evolutionary route of the acquisition of betaine aldehyde dehydrogenase activity by plant ALDH10 enzymes: implications for the synthesis of the osmoprotectant glycine betaine. BMC Plant Biol 14:149

    Article  PubMed  PubMed Central  Google Scholar 

  • Muoki RC, Paul A, Kumar S (2012) A shared response of thaumatin like protein, chitinase, and late embryogenesis abundant protein3 to environmental stresses in tea [Camellia sinensis (L.) O. Kuntze]. Funct Integr Genom 12:565–571

    Article  CAS  Google Scholar 

  • Mwangi JW, Rode C, Colditz F, Haase C, Braun H, Winkelmann T (2013) Proteomic and histological analyses of endosperm development in Cyclamen persicum as a basis for optimization of somatic embryogenesis. Plant Sci 201:52–65

    Article  PubMed  Google Scholar 

  • Noah AM, Niemenak N, Sunderhaus S, Haase C, Omokolo DN, Winkelmann T, Braun H (2013) Comparative proteomic analysis of early somatic and zygotic embryogenesis in Theobroma cacao L. J Proteom 78:123–133

    Article  CAS  Google Scholar 

  • Nonogaki H, Bassel GW, Bewley JD (2010) Germination—still a mystery. Plant Sci 179:574–581

    Article  CAS  Google Scholar 

  • Park S, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Tsz-fung FC (2009) Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pawłowski TA (2009) Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: influence of abscisic and gibberellic acids. BMC Plant Biol 9:48

    Article  PubMed  PubMed Central  Google Scholar 

  • Pestova TV, Shatsky IN, Hellen CU (1996) Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol Cell Biol 16:6870–6878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson SP, Jacobs AK, Dry IB (1997) A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol 114:771–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Sun J, Liu J, Liu F, Yan J, Gou X, Lu B, Liu Y (2014) RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). Plant Mol Biol 86:443–454

    Article  CAS  PubMed  Google Scholar 

  • Terol J, Soler G, Talon M, Cercos M (2010) The aconitate hydratase family from Citrus. BMC Plant Biol 10:222

    Article  PubMed  PubMed Central  Google Scholar 

  • Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, Yamaguchi-Shinozaki K, Ishihama Y, Hirayama T, Shinozaki K (2009) Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci 106:17588–17593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadassery J, Tripathi S, Prasad R, Varma A, Oelmüller R (2009) Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. J Plant Physiol 166:1263–1274

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yu H, Zhang Y, Lai C, She Y, Li W, Fu F (2014) Interaction between abscisic acid receptor PYL3 and protein phosphatase type 2C in response to ABA signaling in maize. Gene 549:179–185

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Liu S, Song S, Møller IM (2015a) Proteomics of seed development, desiccation tolerance, germination and vigor. Plant Physiol Bioch 86:1–15

    Article  CAS  Google Scholar 

  • Wang W, Song B, Deng Z, Wang Y, Liu S, Møller IM, Song S (2015b) Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation. Plant Physiol 167:1332–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • XiuJun L, YueYang L, XiaoXu C, TianLai L (2009) Physiological and biochemical changes respond to seed after-ripening in Magnolia sieboldii K. Koch. J Beijing For Univ 31:164–168

    Google Scholar 

  • Xu SB, Li T, Deng ZY, Chong K, Xue Y, Wang T (2008) Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. Plant Physiol 148:908–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang P, Li X, Wang X, Chen H, Chen F, Shen S (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7:3358–3368

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, He M, Zhu Z, Li S, Xu Y, Zhang C, Singer SD, Wang Y (2012) Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol 12:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Liu G, Li T, Qi M, Mei M, Lu X (2014) Differential proteome analysis of mature and germinated seeds of Magnolia sieboldii K. Koch. Trees 28:859–870

    Article  CAS  Google Scholar 

  • Zhen Y, Zhao Z, Zheng R, Shi J (2012) Proteomic analysis of early seed development in Pinus massoniana L. Plant Physiol Bioch 54:97–104

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Shanghai Applied Protein Technology Co. Ltd. for the technology support. This research was carried out with financial support from the National Natural Science Foundation of China (No. 31570621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-jun Lu.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Communicated by V. de Dios.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 15952 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, M., Lu, Xj., Zhang, Xl. et al. Variation in carbohydrates and screening of related differential proteins during the seed germination of Magnolia sieboldii K. Koch. Trees 31, 63–75 (2017). https://doi.org/10.1007/s00468-016-1456-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1456-8

Keywords

Navigation