Skip to main content
Log in

Time-lapse cell tracking reveals morphohistological features in somatic embryogenesis of Araucaria angustifolia (Bert) O. Kuntze

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Somatic embryogenesis in A. angustifolia is dependent on using smaller cell aggregates and a high osmotic potential culture medium followed by transfers to maturation culture medium with ABA.

Abstract

Araucaria angustifolia has been extensively studied as a model system for somatic embryogenesis (SE). This protocol is characterized by the development of embryogenic cultures (EC), which are multiplied in pro-embryogenic masses (PEM). However, it hampers in the maturation of somatic embryos from PEM. The building of a SE fate map, allowing the analysis of individual stages of embryonic development, may help identify the morpho-histological features that are causing failure in the maturation process. In this sense, the aim of this work was to characterize by means of time-lapse cell tracking the process of proliferation and maturation of A. angustifolia EC. We also performed transmission electron microscopy in EC and light microscopy analysis in early somatic embryos obtained. The TEM analysis showed a novel characterization of the different cell types that constitute the PEMs and the identification of intriguing mitochondrial structural morphology. In the cell tracking results, smaller cell aggregates showed to be more suitable for transfer to maturation step. Accordingly, the use of smaller cell aggregates together with a high osmotic potential culture medium during maturation phase I (ABA-free), and subsequently transfers to the maturation phase II (with ABA) proved to be more suitable for early somatic embryos obtainment. Moreover, the direct transfer of EC from proliferation to maturation with ABA seems to inhibit the further development of somatic embryos. Finally, the early somatic embryos characterized by light microscopy revealed the presence of intercellular spaces, which tended to develop poorly organized shoot apical meristems and abnormal embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Astarita LV, Guerra MP (1998) Early somatic embryogenesis in Araucaria angustifolia—induction and maintenance of embryonal-suspensor mass cultures. Braz J Plant Physiol 10:113–118

    CAS  Google Scholar 

  • Astarita LV, Guerra MP (2000) Conditioning of the culture medium by suspension cells and formation of somatic proembryo in Araucaria angustifolia (Coniferae). In Vitro Cell Dev Biol Plant 36:194–200

    Article  Google Scholar 

  • Dutra NT, Silveira V, de Azevedo IG, Gomes-Neto LR, Façanha AR, Steiner N, Guerra MP, Floh EIS, Santa-Catarina C (2013) Polyamines affect the cellular growth and structure of pro-embryogenic masses in Araucaria angustifolia embryogenic cultures through the modulation of proton pump activities and endogenous levels of polyamines. Physiol Plant 148:121–132

    Article  CAS  PubMed  Google Scholar 

  • Farias-Soares FL, Steiner N, Schmidt EC, Pereira MLT, Rogge-Renner GD, Bouzon ZL, Floh ESI, Guerra MP (2014) The transition of proembryogenic masses to somatic embryos in Araucaria angustifolia (Bertol.) Kuntze is related to the endogenous contents of IAA, ABA and polyamines. Acta Physiol Plant 36:1853–1865

    Article  CAS  Google Scholar 

  • Filonova LH, Bozhkov PV, von Arnold S (2000a) Developmental pathway of somatic embryogenesis in Picea abies as revealed by time-lapse tracking. J Exp Bot 51:249–264

    Article  CAS  PubMed  Google Scholar 

  • Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, Von Arnold S (2000b) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci 113:4399–4411

    CAS  PubMed  Google Scholar 

  • Filonova LH, von Arnold S, Daniel G, Bozhkov PV (2002) Programmed cell death eliminates all but one embryo in a polyembryonic plant seed. Cell Death Differ 9:1057–1062

    Article  CAS  PubMed  Google Scholar 

  • Goldberg RB, De Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266:605–614

    Article  CAS  PubMed  Google Scholar 

  • Guerra MP, Silveira V, Santos ALW, Astarita LV, Nodari RO (2000) Somatic embryogenesis in Araucaria angustifolia (Bert) O. Ktze. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. Kluwer Academic Publishers, Dordrecht, pp 457–478

    Chapter  Google Scholar 

  • Gupta PK, Pullman G (1991) Method for reproducing coniferous plants by somatic embryogenesis using abscisic acid and osmotic potential variation. US Patent 5,036,007

  • IUCN (2014) IUCN red list of threatened species. http://www.iucnredlist.org. Accessed 30 Mar 2015

  • Jendrach M, Mai S, Pohl S, Vöth M, Bereiter-Hahn J (2008) Short-and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. Mitochondrion 8:293–304

    Article  CAS  PubMed  Google Scholar 

  • Jo L, Santos ALW, Bueno CA, Barbosa HR, Floh EIS (2013) Proteomic analysis and polyamines, ethylene and reactive oxygen species levels of Araucaria angustifolia (Brazilian pine) embryogenic cultures with different embryogenic potential. Tree Physiol 34:94–104

    Article  PubMed  Google Scholar 

  • Karami O, Saidi A (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 37:2493–2507

    Article  CAS  PubMed  Google Scholar 

  • Kuo J, O’Brien TP (1974) Lignified sieve elements in the wheat leaf. Planta 117:349–353

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Hajnoczky G (2011) Altered fusion dynamics underlie unique morphological changes in mitochondria during hypoxia–reoxygenation stress. Cell Death Differ 18:1561–1572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marsoni M, Bracale M, Espen L, Prinsi B, Negri AS, Vannini C (2008) Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep 27:347–356

    Article  CAS  PubMed  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at light pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rose RJ, Mantiri FR, Kurdyukov S, Chen SK, Wang XD, Nolan KE, Sheahan MB (2010) Developmental biology of somatic embryogenesis. In: Pua EC, Davey MR (eds) Plant developmental biology: biotechnology perspectives. Springer, Berlin, pp 3–26

    Chapter  Google Scholar 

  • Santos ALW, Silveira V, Steiner N, Vidor M, Guerra MP (2002) Somatic embryogenesis in Paraná Pine (Araucaria angustifolia (Bert.) O. Kuntze). Braz Arch Biol Technol 45:97–106

    Article  Google Scholar 

  • Santos ALW, Steiner N, Guerra MP, Zoglauer K, Moerschbacher BM (2008) Somatic embryogenesis in Araucaria angustifolia. Biol Plant 52:195–199

    Article  Google Scholar 

  • Santos ALW, Silveira V, Steiner N, Maraschin M, Guerra MP (2010) Biochemical and morphological changes during the growth kinetics of Araucaria angustifolia suspension cultures. Braz Arch Biol Technol 53:497–504

    Article  Google Scholar 

  • Schlögl PS, Santos ALW, Vieira LN, Floh EIS, Guerra MP (2012) Gene expression during early somatic embryogenesis in Brazilian pine (Araucaria angustifolia (Bert) O. Ktze). Plant Cell Tissue Organ Cult 108:173–180

    Article  Google Scholar 

  • Silveira V, Steiner N, Santos ALW, Nodari RO, Guerra MP (2002) Biotechnology tolls in Araucaria angustifolia conservation and improvement: inductive factors affecting somatic embryogenesis. Crop Breed Appl Biotech 2:463–470

    Article  Google Scholar 

  • Smertenko AP, Bozhkov PV, Filonova LH, von Arnold S, Hussey PJ (2003) Re-organisation of the cytoskeleton during developmental programmed cell death in Picea abies embryos. Plant J 33:813–824

    Article  CAS  PubMed  Google Scholar 

  • Stasolla C (2010) Glutathione redox regulation of in vitro embryogenesis. Plant Physiol Biochem 48:319–327

    Article  CAS  PubMed  Google Scholar 

  • Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35

    Article  CAS  Google Scholar 

  • Stefenon VM, Steiner N, Guerra MP, Nodari RO (2009) Integrating approaches towards the conservation of forest genetic resources: a case study of Araucaria angustifolia. Biodivers Conserv 18:2433–2448

    Article  Google Scholar 

  • Steiner N, Vieira FN, Maldonado S, Guerra MP (2005) Effect of carbon source on morphology and histodifferentiation of Araucaria angustifolia embryogenic cultures. Braz Arch Biol Technol 48:895–903

    Article  CAS  Google Scholar 

  • Strehlow D, Gilbert W (1993) A fate map for the first cleavage of zebrafish. Nature 361:451–453

    Article  Google Scholar 

  • Vágner M, Vondráková Z, Fischerová L, Opatrná J (2005) Norway spruce somatic embryogenesis: membrane rafts as compromise between liquid and solidified media. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht, pp 295–302

    Chapter  Google Scholar 

  • Vieira LN, Santa-Catarina C, Fraga HPF, Santos ALW, Steinmacher DA, Schlogl PS, Silveira V, Steiner N, Floh E, Guerra MP (2012) Glutathione improves early somatic embryogenesis in Araucaria angustifolia (Bert) O. Kuntze by alteration in nitric oxide emission. Plant Sci 195:80–87

    Article  CAS  Google Scholar 

  • von Arnold S, Clapham D (2008) Spruce embryogenesis. In: Suarez MF, Bozhkov PV (eds) Methods in molecular biology. Humana Press, Totowa, pp 31–47

    Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Kyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249

    Article  Google Scholar 

  • Welch WJ, Suhan JP (1985) Morphological study of the mammalian stress response: characterization of changes in cytoplasmic organelles, cytoskeleton, and nucleoli, and appearance of intranuclear actin filaments in rat fibroblasts after heat-shock treatment. J Cell Biol 101:1198–1211

    Article  CAS  PubMed  Google Scholar 

  • Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotech 13:12–13

    Article  Google Scholar 

  • Zhang CX, Li Q, Kong L (2007) Induction, development and maturation of somatic embryos in Bunge’s pine (Pinus bungeana Zucc. ex Endl.). Plant Cell Tiss Organ Cult 91:273–280

    Article  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 478393/2013-0, and 306126/2013-3), and Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC 14848/2011-2, 3770/2012, and 2780/2012-4). The authors thank to Central Laboratory of Electron Microscopy (LCME) of the Federal University of Santa Catarina, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel P. Guerra.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. Shane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraga, H.P.F., Vieira, L.N., Puttkammer, C.C. et al. Time-lapse cell tracking reveals morphohistological features in somatic embryogenesis of Araucaria angustifolia (Bert) O. Kuntze. Trees 29, 1613–1623 (2015). https://doi.org/10.1007/s00468-015-1244-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-015-1244-x

Keywords

Navigation