Skip to main content
Log in

Comparative proteomic analysis of tetraploid black locust (Robinia pseudoacacia L.) cuttings in different phases of adventitious root development

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Comparative proteome analysis revealed the proteins that are differentially expressed during the processes of tetraploid black locust ( Robinia pseudoacacia L.) adventitious root formation, which are involved in carbohydrate binding, energy and metabolism, and stress response.

Abstract

The tetraploid black locust (Robinia pseudoacacia L.) is an important fast-growing tree used in afforestation and is also a protein-rich feed for poultry. Currently, the primary approach for tetraploid black locust reproduction is through cutting propagation. To identify the specific proteins in the rooting process, including the formation of adventitious root primordium (ARP) and the elongation of adventitious root (EAR), a comparative proteomic analysis of the ARP and EAR of tetraploid black locust was performed to identify related proteins that may be involved in regulating ARP formation and the process of EAR. High-resolution two-dimensional electrophoresis (2-DE) followed by colloidal Coomassie staining and mass spectrometric (MS) analysis was used to identify differentially expressed proteins in ARP and EAR. A total of 84 protein spots showed significant expression changes by 2-DE and were successfully identified by MALDI TOF/TOF MS/MS. Of these, 29 proteins were differentially expressed during the ARP phase, and the remaining 55 proteins did so in the EAR phase. The majority of identified proteins were classified into functional categories, including carbohydrate binding, energy and metabolism, protein degradation/folding and import, cellular cytoskeleton, hormone-related and oxidation reactions, stress response, cell proliferation, and transcription regulation. Quantitative real-time PCR analysis was performed for selected proteins and showed that not all of the protein expression levels were consistent with the mRNA levels. This study provides the basis for further functional studies of differentially expressed proteins, which will contribute to the understanding of the biochemical processes in adventitious root primordium formation and the elongation of adventitious root.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2-DE:

Two-dimensional gel electrophoresis

MALDI:

Matrix assisted laser desorption ionization

TOF:

Time of flight

TOF MS:

Time of flight mass spectrometry

MS:

Mass spectrometry

References

  • Acosta M, Oliveros-Valenzuela MR, Nicolás C, Sánchez-Bravo J (2009) Rooting of carnation cuttings. Plant Signaling Behav 4:234–236

    Article  CAS  Google Scholar 

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  • Agulló-Antón MÁ, Ferrández-Ayela A, Fernández-García N, Nicolás C, Albacete A, Pérez-Alfocea F, Sánchez-Bravo J, Pérez-Pérez JM, Acosta M (2014) Early steps of adventitious rooting: morphology, hormonal profiling and carbohydrate turnover in carnation stem cuttings. Physiol Plant 150:446–462

    Article  PubMed  Google Scholar 

  • Akashi K, Yoshida K, Kuwano M, Kajikawa M, Yoshimura K, Hoshiyasu S, Inagaki N, Yokota A (2011) Dynamic changes in the leaf proteome of a C3 xerophyte, Citrullus lanatus (wild watermelon), in response to water deficit. Planta 233:947–960

    Article  CAS  PubMed  Google Scholar 

  • Arai Y, Hayashi M, Nishimura M (2008) Proteomic analysis of highly purified peroxisomes from etiolated soybean cotyledons. Plant Cell Physiol 49:526–539

    Article  CAS  PubMed  Google Scholar 

  • Argueso CT, Hansen M, Kieber JJ (2007) Regulation of ethylene biosynthesis. J Plant Growth Regul 26:92–105

    Article  CAS  Google Scholar 

  • Balbuena TS, Jo L, Pieruzzi FP, Dias LL, Silveira V, Santa-Catarina C, Junqueira M, Thelen JJ, Shevchenko A, Floh EI (2011) Differential proteome analysis of mature and germinated embryos of Araucaria angustifolia. Phytochemistry 72:302–311

    Article  CAS  PubMed  Google Scholar 

  • Biondi S, Diaz T, Iglesias I, Gamberini G, Bagni N (1990) Polyamines and ethylene in relation to adventitious root formation in Prunus avium shoot cultures. Physiol Plant 78:474–483

    Article  Google Scholar 

  • Biricolti S, Fabbri A, Ferrini F, Pisani P (1994) Adventitious rooting in chestnut: an anatomical investigation. Sci Hortic 59:197–205

    Article  Google Scholar 

  • Cameron RJ, Thomson GV (1969) The vegetative propagation of Pinus radiata: root initiation in cuttings. Bot Gaz: pp 242–251

  • Cammue BP, Broekaert WF, Kellens JT, Raikhel NV, Peumans WJ (1989) Stress-induced accumulation of wheat germ agglutinin and abscisic acid in roots of wheat seedlings. Plant Physiol 91:1432–1435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chamovitz D, Sandmann G, Hirschberg J (1993) Molecular and biochemical characterization of herbicide-resistant mutants of cyanobacteria reveals that phytoene desaturation is a rate-limiting step in carotenoid biosynthesis. J Biol Chem 268:17348–17353

    CAS  PubMed  Google Scholar 

  • Chan Z, Wang Q, Xu X, Meng X, Qin G, Li B, Tian S (2008) Functions of defense-related proteins and dehydrogenases in resistance response induced by salicylic acid in sweet cherry fruits at different maturity stages. Proteomics 8:4791–4807

    Article  CAS  PubMed  Google Scholar 

  • Chinchilla D, Frugier F, Raices M, Merchan F, Giammaria V, Gargantini P, Gonzalez-Rizzo S, Crespi M, Ulloa R (2008) A mutant ankyrin protein kinase from Medicago sativa affects Arabidopsis adventitious roots. Funct Plant Biol 35:92–101

    Article  CAS  Google Scholar 

  • Correia S, Vinhas R, Manadas B, Lourenço AS, Veríssimo P, Canhoto JM (2012) Comparative proteomic analysis of auxin-Induced embryogenic and nonembryogenic tissues of the solanaceous tree Cyphomandra betacea (Tamarillo). J Proteome Res 11:1666–1675

    Article  CAS  PubMed  Google Scholar 

  • Cox B, Kislinger T, Wigle DA, Kannan A, Brown K, Okubo T, Hogan B, Jurisica I, Frey B, Rossant J (2007) Integrated proteomic and transcriptomic profiling of mouse lung development and Nmyc target genes. Mol Syst Biol 3:1–15

    Google Scholar 

  • da Rocha Corrêa L, Paim DC, Schwambach J, Fett-Neto AG (2005) Carbohydrates as regulatory factors on the rooting of Eucalyptus saligna Smith and Eucalyptus globulus Labill. Plant Growth Regul 45:63–73

    Article  Google Scholar 

  • Damerval C, De Vienne D, Zivy M, Thiellement H (1986) Technical improvements in two-dimensional electrophoresis increase the level of genetic variation detected in wheat-seedling proteins. Electrophoresis 7:52–54

    Article  CAS  Google Scholar 

  • de Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C (2009) Global signatures of protein and mRNA expression levels. Mol BioSyst 5:1512–1526

    Google Scholar 

  • Dong J-Z, Dunstan DI (1997) Endochitinase and β-1, 3-glucanase genes are developmentally regulated during somatic embryogenesis in Picea glauca. Planta 201:189–194

    Article  CAS  PubMed  Google Scholar 

  • Fabbri A, Cicala A, Tamburino A (1996) Anatomy of adventitious root formation in Opuntia ficus-indica cladodes. J Hortic Sci 71:235–242

    Google Scholar 

  • Fan W, Cui W, Li X, Chen S, Liu G, Shen S (2011) Proteomics analysis of rice seedling responses to ovine saliva. J Plant Physiol 168:500–509

    Article  CAS  PubMed  Google Scholar 

  • Filiti N, Rosati P, Montuschi N (1987) In vitro rhizogenesis: histo-anatomical aspects on Prunus rootstock. Adv Hortic Sci 1:34–38

    Google Scholar 

  • Friedman RA, Altman A, Bachrach U (1982) Polyamines and root formation in mung bean hypocotyl cuttings I. Effects of exogenous compounds and changes in endogenous polyamine content. Plant Physiol 70:844–848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Friedman RA, Altman A, Bachrach U (1985) Polyamines and root formation in mung bean hypocotyl cuttings II. Incorporation of precursors into polyamines. Plant Physiol 79:80–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galindo González LM, El Kayal W, JU CJT, Allen CC, KING-JONES S, Cooke JE (2012) Integrated transcriptomic and proteomic profiling of white spruce stems during the transition from active growth to dormancy. Plant Cell Environ 35:682–701

    Article  PubMed  Google Scholar 

  • Gao F, Zhou Y, Zhu W, Li X, Fan L, Zhang G (2009) Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves. Planta 230:1033–1046

    Article  CAS  PubMed  Google Scholar 

  • Genre A, Bonfante P (1998) Actin versus tubulin configuration in arbuscule-containing cells from mycorrhizal tobacco roots. New Phytol 140:745–752

    Article  CAS  Google Scholar 

  • Girouard RM (1967) Initiation and development of adventitious roots in stem cuttings of Hedera helix: anatomical studies of the Juvenile growth phase. Can J Bot 45:1877–1881

    Article  Google Scholar 

  • Gomez-Gomez L, Carrasco P (1996) Hormonal regulation of S-adenosylmethionine synthase transcripts in pea ovaries. Plant Mol Biol 30:821–832

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves JC, Diogo G, Amâncio S (1998) In vitro propagation of chestnut (Castanea sativa × C. crenata): effects of rooting treatments on plant survival, peroxidase activity and anatomical changes during adventitious root formation. Sci Hortic 72:265–275

    Article  Google Scholar 

  • Habu Y, Fukushima H, Sakata Y, Abe H, Funada R (1996) A gene encoding a major Kunitz proteinase inhibitor of storage organs of winged bean is also expressed in the phloem of stems. Plant Mol Biol 32:1209–1213

    Article  CAS  PubMed  Google Scholar 

  • Hamann A (1998) Adventitious root formation in cuttings of loblolly pine (Pinus taeda L.): developmental sequence and effects of maturation. Trees 12:175–180

    Google Scholar 

  • Hilaire RS, Berwart CAF, Pérez-Muñoz CA (1996) Adventitious root formation and development in cuttings of Mussaenda erythrophylla L. Schum. & Thonn. HortScience 31:1023–1025

    Google Scholar 

  • Ivanchenko MG, Muday GK, Dubrovsky JG (2008) Ethylene–auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J 55:335–347

    Article  CAS  PubMed  Google Scholar 

  • Jarvis B, Yasmin S (1987) Plant growth regulators and adventitious root development in relation to auxin. Biol Plant 29:189–198

    Article  CAS  Google Scholar 

  • Johnson R, Narvaez J, An G, Ryan C (1989) Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc Natl Acad Sci 86:9871–9875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khatoon A, Rehman S, Hiraga S, Makino T, Komatsu S (2012) Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress. J Proteomics 75:5706–5723

    Article  CAS  PubMed  Google Scholar 

  • Kishitani S, Takanami T, Suzuki M, Oikawa M, Yokoi S, Ishitani M, Alvarez-Nakase A, Takabe T (2000) Compatibility of glycinebetaine in rice plants: evaluation using transgenic rice plants with a gene for peroxisomal betaine aldehyde dehydrogenase from barley. Plant Cell Environ 23:107–114

    Article  CAS  Google Scholar 

  • Kislinger T, Cox B, Kannan A, Chung C, Hu P, Ignatchenko A, Scott MS, Gramolini AO, Morris Q, Hallett MT (2006) Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell 125:173–186

    Article  CAS  PubMed  Google Scholar 

  • Konishi H, Yamane H, Maeshima M, Komatsu S (2004) Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling. Plant Mol Biol 56:839–848

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843–2854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee CP, Eubel H, Solheim C, Millar AH (2012) Mitochondrial proteome heterogeneity between tissues from the vegetative and reproductive stages of Arabidopsis thaliana development. J Proteome Res 11:3326–3343

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Jiang J-Z (2006) Research progress of feed tetraploid black locust. Pratacult Sci 23:41–46 (in Chinese with English abstract)

    Google Scholar 

  • Li F, Shi J, Shen C, Chen G, Hu S, Chen Y (2009) Proteomic characterization of copper stress response in Elsholtzia splendens roots and leaves. Plant Mol Biol 71:251–263

    Article  CAS  PubMed  Google Scholar 

  • Li B, He L, Guo S, Li J, Yang Y, Yan B, Sun J, Li J (2013) Proteomics reveal cucumber Spd-responses under normal condition and salt stress. Plant Physiol Biochem 67:7–14

    Article  CAS  PubMed  Google Scholar 

  • Ling WX, Zhong Z (2012) Seasonal variation in rooting of the cuttings from Tetraploid locust in relation to nutrients and endogenous plant hormones of the shoot. Turk J Agric For 36:257–266

    Google Scholar 

  • Liu J, Mukherjee L, Reid DM (1990) Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. III. The role of ethylene. Physiol Plant 78:268–276

    Article  CAS  Google Scholar 

  • Liu R, Chen S, Jiang J, Zhu L, Zheng C, Han S, Gu J, Sun J, Li H, Wang H (2013) Proteomic changes in the base of chrysanthemum cuttings during adventitious root formation. BMC Genomics 14:919

    Article  PubMed Central  PubMed  Google Scholar 

  • Maës O, Coutos-Thévenot P, Jouenne T, Boulay M, Guern J (1997) Influence of extracellular proteins, proteases and protease inhibitors on grapevine somatic embryogenesis. Plant Cell Tissue Organ Cult 50:97–105

    Article  Google Scholar 

  • Mendes A, Cidade L, Otoni W, Soares-Filho W, Costa M (2011) Role of auxins, polyamines and ethylene in root formation and growth in sweet orange. Biol Plant 55:375–378

    Article  CAS  Google Scholar 

  • Meng F, Pang H, Huang F, Liu L, Wang Y (2012) Tetraploid black locust (Robinia pseudoacacia L.) Increased salt tolerance by activation of the antioxidant system. Biotechnol Biotechnol Equip 26:3351–3358

    Article  CAS  Google Scholar 

  • Mitprasat M, Roytrakul S, Jiemsup S, Boonseng O, Yokthongwattana K (2011) Leaf proteomic analysis in cassava (Manihot esculenta, Crantz) during plant development, from planting of stem cutting to storage root formation. Planta 233:1209–1221

    Article  CAS  PubMed  Google Scholar 

  • Mitsuhashi W, Yamashita T, Toyomasu T, Kashiwagi Y, Konnai T (2004) Sequential development of cysteine proteinase activities and gene expression during somatic embryogenesis in carrot. Biosci Biotechnol Biochem 68:705–713

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Moriuchi H, Okamoto C, Nishihama R, Yamashita I, Machida Y, Tanaka N (2004) Nuclear localization and interaction of RolB with plant 14-3-3 proteins correlates with induction of adventitious roots by the oncogene rolB. Plant J 38:260–275

    Article  CAS  PubMed  Google Scholar 

  • Nag S, Saha K, Choudhuri M (2001) Role of auxin and polyamines in adventitious root formation in relation to changes in compounds involved in rooting. J Plant Growth Regul 20:182–194

    Article  CAS  Google Scholar 

  • Naija S, Elloumi N, Jbir N, Ammar S, Kevers C (2008) Anatomical and biochemical changes during adventitious rooting of apple rootstocks MM 106 cultured in vitro. C R Biol 331:518–525

    Article  CAS  PubMed  Google Scholar 

  • Norris SR, Barrette TR, DellaPenna D (1995) Genetic dissection of carotenoid synthesis in Arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell Online 7:2139–2149

    Article  CAS  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lombardo MC, Lamattina L (2004) Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135:279–286

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pandey A, Mann M (2000) Proteomics to study genes and genomes. Nature 405:837–846

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Chakraborty S, Datta A, Chakraborty N (2008) Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.). Mol Cell Proteomics 7:88–107

    Article  CAS  PubMed  Google Scholar 

  • Radwan O, Wu X, Govindarajulu M, Libault M, Neece DJ, Oh M-H, Berg RH, Stacey G, Taylor CG, Huber SC (2012) 14-3-3 proteins SGF14c and SGF14l play critical roles during soybean nodulation. Plant Physiol 160:2125–2136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rasmussen A, Smith TE, Hunt MA (2009) Cellular stages of root formation, root system quality and survival of Pinus elliottii var. elliottii × P. caribaea var. hondurensis cuttings in different temperature environments. New For 38:285–294

    Article  Google Scholar 

  • Richardson M (1991) Seed storage proteins: the enzyme inhibitors. Method Plant Biochem 5:259–305

    CAS  Google Scholar 

  • Rigal A, Yordanov YS, Perrone I, Karlberg A, Tisserant E, Bellini C, Busov VB, Martin F, Kohler A, Bhalerao R (2012) The AINTEGUMENTA LIKE1 homeotic transcription factor PtAIL1 controls the formation of adventitious root primordia in poplar. Plant Physiol 160:1996–2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rinalducci S, Egidi MG, Mahfoozi S, Jahanbakhsh Godehkahriz S, Zolla L (2011) The influence of temperature on plant development in a vernalization-requiring winter wheat: a 2-DE based proteomic investigation. J Proteomics 74:643–659

    Article  CAS  PubMed  Google Scholar 

  • Ruedell CM, de Almeida MR, Schwambach J, Posenato CF, Fett-Neto AG (2013) Pre and post-severance effects of light quality on carbohydrate dynamics and microcutting adventitious rooting of two Eucalyptus species of contrasting recalcitrance. Plant Growth Regul 69:235–245

    Article  CAS  Google Scholar 

  • Sedmak JJ, Grossberg SE (1977) A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250. Anal Biochem 79:544–552

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Kannan M, Reddy AR (2011) A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiata (L.) Wilczek. Planta 233:1111–1127

    Article  CAS  PubMed  Google Scholar 

  • Silva Rde C, Carmo LS, Luis ZG, Silva LP, Scherwinski-Pereira JE, Mehta A (2014) Proteomic identification of differentially expressed proteins during the acquisition of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.). J Proteomics 104:112–127

    Article  PubMed  Google Scholar 

  • Smith HM, Hicks GR, Raikhel NV (1997) Importin [alpha] from Arabidopsis thaliana is a nuclear import receptor that recognizes three classes of import signals. Plant Physiol 114:411–417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sorin C, Negroni L, Balliau T, Corti H, Jacquemot M-P, Davanture M, Sandberg G, Zivy M, Bellini C (2006) Proteomic analysis of different mutant genotypes of Arabidopsis led to the identification of 11 proteins correlating with adventitious root development. Plant Physiol 140:349–364

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sukumar P, Maloney GS, Muday GK (2013) Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis. Plant Physiol 162:1392–1405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Van Damme EJ, Barre A, Smeets K, Torrekens S, Van Leuven F, Rouge P, Peumans WJ (1995) The bark of Robinia pseudoacacia contains a complex mixture of lectins (characterization of the proteins and the cDNA clones). Plant Physiol 107:833–843

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Damme EJ, Culerrier R, Barre A, Alvarez R, Rougé P, Peumans WJ (2007) A novel family of lectins evolutionarily related to class V chitinases: an example of neofunctionalization in legumes. Plant Physiol 144:662–672

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Wang Z, Shi L, Wang L, Xu F (2010) Proteomic alterations of Brassica napus root in response to boron deficiency. Plant Mol Biol 74:265–278

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhao Z, Quan J (2011) Indole-3-butyric acid on rooting and endogenous plant hormones in tetraploid and diploid Robinia pseudoacacia hardwood cuttings. Phyton-revista Internacional de Botanica Experimental 80:93–100

    Google Scholar 

  • Wang Z, Wang M, Liu L, Meng F (2013) Physiological and Proteomic Responses of Diploid and Tetraploid Black Locust (Robinia pseudoacacia L.) Subjected to Salt Stress. Int J Mol Sci 14:20299–20325

    Article  PubMed Central  PubMed  Google Scholar 

  • Waters ER, Lee GJ, Vierling E (1996) Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot 47:325–338

    Article  CAS  Google Scholar 

  • Wimalasekera R, Tebartz F, Scherer GF (2011) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181:593–603

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Zu X, Wang X, Sun A, Zhang J, Wang S, Chen Y (2013) Comparative proteomic analysis of the effects of salicylic acid and abscisic acid on maize (Zea mays L.) leaves. Plant Mol Biol Rep 31:507–516

    Article  CAS  Google Scholar 

  • Yadav S, David A, Bhatla SC (2011) Nitric oxide accumulation and actin distribution during auxin-induced adventitious root development in sunflower. Sci Hortic 129:159–166

    Article  CAS  Google Scholar 

  • Zadraznik T, Hollung K, Egge-Jacobsen W, Meglic V, Sustar-Vozlic J (2013) Differential proteomic analysis of drought stress response in leaves of common bean (Phaseolus vulgaris L.). J Proteomics 78:254–272

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Ren L, J-h Yue, Wang L, L-h Zhuo, X-h Shen (2013) A comprehensive analysis of flowering transition in Agapanthus praecox ssp. orientalis (Leighton) Leighton by using transcriptomic and proteomic techniques. J Proteomics 80:1–25

    Article  CAS  PubMed  Google Scholar 

  • zur Nieden U, Neumann D, Bucka A, Nover L (1995) Tissue-specific localization of heat-stress proteins during embryo development. Planta 196:530–538

    Article  CAS  Google Scholar 

Download references

Author contribution statement

ZZ developed and supervised the work. SZ carried out protein extraction, 2-DE gel analysis, image and statistical analysis, MALDI TOF/TOF MS/MS analysis, gene transcriptional experiment, and drafted the manuscript. LZ contributed to the drafting of the manuscript, statistical analysis, and cutting, QZ helped in gene transcriptional analysis. All authors read and approved the final manuscript.

Acknowledgments

This work was financially supported by the National Forestry Industry Research Special Funds for Public Welfare Projects (China) (201404302). We are grateful to the Key Laboratory of Agriculture in Arid Areas of Northwest A&F University (China) for providing the experimental platform.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Zhao.

Additional information

Communicated by R. Hampp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 239 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zhao, Z., Zhang, L. et al. Comparative proteomic analysis of tetraploid black locust (Robinia pseudoacacia L.) cuttings in different phases of adventitious root development. Trees 29, 367–384 (2015). https://doi.org/10.1007/s00468-014-1116-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-014-1116-9

Keywords

Navigation