Skip to main content
Log in

Somatic embryogenesis and cryostorage of eastern hemlock and Carolina hemlock for conservation and restoration

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Embryogenic cultures of eastern and Carolina hemlocks could be initiated, and somatic embryos and plantlets produced using standard conifer protocols and media. Embryogenic hemlock cultures were cryostored and recovered.

Abstract

Eastern hemlock (Tsuga canadenesis) and Carolina hemlock (Tsuga caroliniana) are threatened with extirpation from their native ranges in eastern North America by the introduction of the hemlock woolly adelgid (HWA; Adelges tsugae), an exotic insect pest that has already killed millions of hemlock trees. Efforts to conserve and restore these members of the Pinaceae could be greatly enhanced by the availability of an in vitro propagation system. We conducted experiments to initiate embryogenic cultures from eastern and Carolina hemlock zygotic embryos at different stages of development using three media supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-Benzylaminopurine (BA). Cone collection date, medium and source tree had significant effects on induction of embryogenic tissue from zygotic embryo explants of both species, which ranged as high as 52 % for eastern hemlock and 17 % for Carolina hemlock. Embryogenic hemlock cultures could be cryostored using a protocol employing sorbitol and DMSO, and recovered following several months of frozen storage. Transfer of embryogenic tissue from proliferation media containing 2, 4-D and BA to a Litvay medium with abscisic acid promoted the development of somatic embryos, which were stimulated to mature by slow drying under semi-permeable plastic film. Embryos moved to an imbibition-germination medium without plant growth regulators and incubated in the light elongated and subsequently germinated. A small number of germinated embryos survived transfer to ex vitro conditions and grew into somatic seedlings. The embryogenesis and cryostorage systems developed in the study are already being integrated with hemlock breeding efforts to develop clones with resistance or tolerance to HWA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Reference

  • Becwar MR, Nagmani R, Wann SR (1990) Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can J For Res 20:810–817

    Article  Google Scholar 

  • Bozhkov PV, von Arnold S (1998) Polyethylene glycol promotes maturation but inhibits further development of Picea abies somatic embryos. Physiol Plant 104:211–224

    Article  CAS  Google Scholar 

  • DeVerno LL, Park YS, Bonga JM, Barrett JD (1999) Somaclonal variation in cryopreserved embryogenic clones of white spruce [Picea glauca (Moench) Voss.]. Plant Cell Rep 18:948–953

    Article  CAS  Google Scholar 

  • Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, Orwig DA, Rodenhouse NL, Sobczak WV, Stinson KA, Stone JK, Swan CM, Thompson J, Von Holle B, Webster JR (2005) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 3:479–486

    Article  Google Scholar 

  • Finer JJ, Kriebel HB, Becwar MR (1989) Initiation of embryogenic tissue and suspension cultures of eastern white pine (Pinus strobus L.). Plant Cell Rep 8:203–206

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Durzan DJ (1985) Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana). Plant Cell Rep 4:177–179

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves C, Smith DR (1992) Cryopreservation of Pinus radiata embryogenic tissue. Comb Proc Intl Plant Prop Soc 42:327–333

    Google Scholar 

  • Jetton RM, Whittier WA, Dvorak WS, Rhea JR (2013) Conserved ex situ genetic resources of eastern and Carolina hemlock: eastern North American conifers threatened by the hemlock woolly adelgid. Tree Plant Notes 56:59–71

    Google Scholar 

  • Kartha KK, Fowke LC, Leung NL, Caswell KL, Hakman I (1988) Induction of somatic embryos and plantlets from cryopreserved cell cultures of white spruce (Picea glauca). Plant Physiol 132:529–539

    Article  CAS  Google Scholar 

  • Klimaszewska K, Overton C, Stewart D, Rutledge RG (2011) Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression profiles of 11 genes followed during the tissue culture process. Planta 233:635–647

    Article  CAS  PubMed  Google Scholar 

  • Kong L, von Aderkas P (2007) Genotype effects on ABA consumption and somatic embryo maturation in interior spruce (Picea glauca x engelmanni). J Exp Bot 58:1525–1531

    Article  CAS  PubMed  Google Scholar 

  • Kong L, von Aderkas P (2011) A novel cryopreservation method for conifer immature somatic embryos without cryoprotectant. Plant Cell Tissue Organ Cult 106:115–125

    Article  CAS  Google Scholar 

  • Kong L, Yeung EC (1995) Effects of silver nitrate and polyethylene glycol on white spruce (Picea glauca) somatic embryo development: enhancing cotyledonary embryo formation and endogenous ABA content. Physiol Plant 93:298–304

    Article  CAS  Google Scholar 

  • Litvay JD, Verma DC, Johnson MA (1985) Influence of a loblolly pine (Pinus taeda L.) culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep 4:325–328

    Article  CAS  PubMed  Google Scholar 

  • McClure MS, Salom SM, Shields KS (2001) Hemlock woolly adelgid. USDA Forest Service Forest Health Enterprise Technology Team Report FHTET-2001-03, Morgantown

  • Merkle SA, Montello PM, Xia X, Upchurch BL, Smith DR (2005) Light quality treatments enhance somatic seedling production in three southern pine species. Tree Physiol 26:187–194

    Article  Google Scholar 

  • Mo LH, von Arnold S (1991) Origin and development of embryogenic cultures from seedlings of Norway spruce (Picea abies). J Plant Physiol 138:223–230

    Article  Google Scholar 

  • Olson JS, Stearns FW, Nienstaedt H (1959) Eastern hemlock seeds and seedlings: response to photoperiod and temperature. Connecticut Agric Expt Stn Bulletin 620, New Haven

  • Potter KM, Dvorak WS, Crane BS, Hipkins VD, Jetton RM, Whittier WA, Rhea R (2008) Allozyme variation and recent evolutionary history of eastern hemlock (Tsuga canadensis) in the southeastern United States. New For 35:131–145

    Article  Google Scholar 

  • SAS Institute Inc (2011) SAS/STAT 9.3 User’s Guide, Cary, NC: SAS Institute Inc

  • Smith DR (1996) Growth Medium. US Patent No. 5,565,355

  • Tautorus TE, Fowke LC, Dunstan DI (1991) Somatic embryogenesis in conifers. Can J Bot 69:1873–1899

    Article  Google Scholar 

  • Touchell DH, Chiang VL, Tsai CJ (2002) Cryopreservation of embryogenic cultures of Picea mariana (black spruce) using vitrification. Plant Cell Rep 21:118–124

    Article  CAS  Google Scholar 

  • Vose JM, Wear DN, Mayfield AE III, Nelson CD (2013) Hemlock woolly adelgid in the southern Appalachians: control strategies, ecological impacts, and potential management responses. For Ecol Manag 291:209–219

    Article  Google Scholar 

  • Walter C, Grace LJ, Wagner A, White DWR, Walden AR, Donaldson SS, Hinton H, Gardner RC, Smith DR (1998) Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Rep 17:460–468

    Article  CAS  Google Scholar 

Download references

Author contribution statement

SAM designed culture initiation experiments and helped design somatic embryo production experiments, conducted data analysis, took photos and wrote all drafts of the manuscript; PMM conducted culture initiation, somatic embryo production and cryopreservation experiments and took photos; HMR conducted culture initiation experiments; LK designed and conducted somatic embryo and somatic seedling production experiments and took photos. All authors approved the final draft of the manuscript.

Acknowledgments

The research reported here was supported by a grant from the USDA Forest Service—Forest Health Protection. The authors would like to thank the USDA Forest Service, the Georgia Department of Natural Resources, Blue Ridge Outdoor Education Center, Camcore, Rusty Rhea, Jim Compton, Chuck Gregory, Danny Tatum, Greg Yates, Bill Dvorak, Robert Jetton and Josh Rood for help with collecting hemlock material, Dale Smith for technical advice and Christine Holtz for help with statistical analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Merkle.

Additional information

Communicated by K. Klimaszewska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merkle, S.A., Montello, P.M., Reece, H.M. et al. Somatic embryogenesis and cryostorage of eastern hemlock and Carolina hemlock for conservation and restoration. Trees 28, 1767–1776 (2014). https://doi.org/10.1007/s00468-014-1084-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-014-1084-0

Keywords

Navigation