Skip to main content
Log in

Emerging monitoring technologies in kidney transplantation

  • Educational Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Non-invasive technologies to monitor kidney allograft health utilizing high-throughput assays of blood and urine specimens are emerging out of the research realm and slowly becoming part of everyday clinical practice. HLA epitope analysis and eplet mismatch score determination promise a more refined approach to the pre-transplant recipient–donor HLA matching that may lead to reduced rejection risk. High-resolution HLA typing and multiplex single antigen bead assays are identifying potential new offending HLA antibody subtypes. There is increasing recognition of the deleterious role non-HLA antibodies play in post-transplant outcomes. Donor-derived cell-free DNA detected by next-generation sequencing is a promising biomarker for kidney transplant rejection. Multi-omics techniques are shedding light on discrete genomic, transcriptomic, proteomic, and metabolomic signatures that correlate with and predict allograft outcomes. Over the next decade, a comprehensive approach to optimize kidney matching and monitor transplant recipients for acute and chronic graft dysfunction will likely involve a combination of those emerging technologies summarized in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dharnidharka VR, Fiorina P, Harmon WE (2014) Kidney transplantation in children. N Engl J Med 371:549–558

    Article  CAS  PubMed  Google Scholar 

  2. Paul LC (2001) Immunologic risk factors for chronic renal allograft dysfunction. Transplantation 71(11 Suppl):SS17–SS23

    CAS  PubMed  Google Scholar 

  3. Ashoor IF, Dharnidharka VR (2019) Non-immunologic allograft loss in pediatric kidney transplant recipients. Pediatr Nephrol 34:211–222

    Article  PubMed  Google Scholar 

  4. Foster BJ (2015) Heightened graft failure risk during emerging adulthood and transition to adult care. Pediatr Nephrol 30:567–576

    Article  PubMed  Google Scholar 

  5. Chua A, Cramer C, Moudgil A, Martz K, Smith J, Blydt-Hansen T, Neu A, Dharnidharka VR, NAPRTCS investigators (2019) Kidney transplant practice patterns and outcome benchmarks over 30 years: the 2018 report of the NAPRTCS. Pediatr Transplant 23:e13597

    Article  PubMed  Google Scholar 

  6. Wiebe C, Pochinco D, Blydt-Hansen TD, Ho J, Birk PE, Karpinski M, Goldberg A, Storsley LJ, Gibson IW, Rush DN, Nickerson PW (2013) Class II HLA epitope matching – a strategy to minimize de novo donor-specific antibody development and improve outcomes. Am J Transplant 13:3114–3122

    Article  CAS  PubMed  Google Scholar 

  7. Sharma A, Taverniti A, Graf N, Teixeira-Pinto A, Lewis JR, Lim WH, Alexander SI, Durkan A, Craig JC, Wong G (2020) The association between human leukocyte antigen eplet mismatches, de novo donor-specific antibodies, and the risk of acute rejection in pediatric kidney transplant recipients. Pediatr Nephrol 35:1061–1068

    Article  PubMed  Google Scholar 

  8. Philogene MC, Amin A, Zhou S, Charnaya O, Vega R, Desai N, Neu AM, Pruette CS (2020) Eplet mismatch analysis and allograft outcome across racially diverse groups in a pediatric transplant cohort: a single-center analysis. Pediatr Nephrol 35:83–94

    Article  PubMed  Google Scholar 

  9. Kausman JY, Walker AM, Cantwell LS, Quinlan C, Sypek MP, Ierino FL (2016) Application of an epitope-based allocation system in pediatric kidney transplantation. Pediatr Transplant 20:931–938

    Article  CAS  PubMed  Google Scholar 

  10. Bryan CF, Chadha V, Warady BA (2016) Donor selection in pediatric kidney transplantation using DR and DQ eplet mismatching: a new histocompatibility paradigm. Pediatr Transplant 20:926–930

    Article  CAS  PubMed  Google Scholar 

  11. Bjerre A, Tangeraas T, Heidecke H, Dragun D, Dechend R, Staff AC (2016) Angiotensin II type 1 receptor antibodies in childhood kidney transplantation. Pediatr Transplant 20:627–632

    Article  CAS  PubMed  Google Scholar 

  12. Fichtner A, Süsal C, Schröder C, Höcker B, Rieger S, Waldherr R, Westhoff JH, Sander A, Dragun D, Tönshoff B (2018) Association of angiotensin II type 1 receptor antibodies with graft histology, function and survival in paediatric renal transplant recipients. Nephrol Dial Transplant 33:1065–1072

    Article  CAS  PubMed  Google Scholar 

  13. Hesemann LE, Subramanian V, Mohanakumar T, Dharnidharka VR (2015) De novo development of antibodies to kidney-associated self-antigens angiotensin II receptor type I, collagen IV, and fibronectin occurs at early time points after kidney transplantation in children. Pediatr Transplant 19:499–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pearl MH, Zhang Q, Palma Diaz MF, Grotts J, Rossetti M, Elashoff D, Gjertson DW, Weng P, Reed EF, Tsai Chambers E (2018) Angiotensin II type 1 receptor antibodies are associated with inflammatory cytokines and poor clinical outcomes in pediatric kidney transplantation. Kidney Int 93:260–269

    Article  CAS  PubMed  Google Scholar 

  15. Pearl MH, Reed EF (2019) Angiotensin II type I receptor antibodies in pediatric solid organ transplant. Hum Immunol 80:568–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Puliyanda DP, Swinford R, Pizzo H, Garrison J, De Golovine AM, Jordan SC (2020) Donor-derived cell-free DNA (dd-cfDNA) for detection of allograft rejection in pediatric kidney transplants. Pediatr Transplant 2020:e13850

    Google Scholar 

  17. Roedder S, Sigdel T, Salomonis N, Hsieh S, Dai H, Bestard O, Metes D, Zeevi A, Gritsch A, Cheeseman J, Macedo C, Peddy R, Medeiros M, Vincenti F, Asher N, Salvatierra O, Shapiro R, Kirk A, Reed EF, Sarwal MM (2014) The kSORT assay to detect renal transplant patients at high risk for acute rejection: results of the multicenter AART study. PLoS Med 11:e1001759

    Article  PubMed  PubMed Central  Google Scholar 

  18. ClinicalTrials.gov. VIRTUUS Children's Study. [cited 2020 November 21]; Available from: https://clinicaltrials.gov/ct2/show/NCT03719339

  19. Mockler C, Sharma A, Gibson IW, Gao A, Wong A, Ho J, Blydt-Hansen TD (2018) The prognostic value of urinary chemokines at 6 months after pediatric kidney transplantation. Pediatr Transplant 22:e13205

    Article  PubMed  CAS  Google Scholar 

  20. Kanzelmeyer NK, Zürbig P, Mischak H, Metzger J, Fichtner A, Ruszai KH, Seemann T, Hansen M, Wygoda S, Krupka K, Tönshoff B, Melk A, Pape L (2019) Urinary proteomics to diagnose chronic active antibody-mediated rejection in pediatric kidney transplantation – a pilot study. Transpl Int 32:28–37

    Article  CAS  PubMed  Google Scholar 

  21. Blydt-Hansen TD, Sharma A, Gibson IW, Mandal R, Wishart DS (2014) Urinary metabolomics for noninvasive detection of borderline and acute T cell-mediated rejection in children after kidney transplantation. Am J Transplant 14:2339–2349

    Article  CAS  PubMed  Google Scholar 

  22. Blydt-Hansen TD, Sharma A, Gibson IW, Wishart DS, Mandal R, Ho J, Nickerson P, Rush D (2017) Urinary metabolomics for noninvasive detection of antibody-mediated rejection in children after kidney transplantation. Transplantation 101:2553–2561

    Article  CAS  PubMed  Google Scholar 

  23. Ahlenstiel-Grunow T, Pape L (2020) Virus-specific T cells in pediatric renal transplantation. Pediatr Nephrol. https://doi.org/10.1007/s00467-020-04522-6

  24. Townamchai N, Safa K, Chandraker A (2013) Immunologic monitoring in kidney transplant recipients. Kidney Res Clin Pract 32:52–61. https://doi.org/10.1016/j.krcp.2013.04.002

    Article  PubMed  PubMed Central  Google Scholar 

  25. Larkins NG, Wong G, Taverniti A, Lim WH (2019) Epitope matching in kidney transplantation: recent advances and current limitations. Curr Opin Organ Transplant 24:370–377

    Article  CAS  PubMed  Google Scholar 

  26. Sypek M, Kausman J, Holt S, Hughes P (2018) HLA epitope matching in kidney transplantation: an overview for the general nephrologist. Am J Kidney Dis 71:720–731

    Article  CAS  PubMed  Google Scholar 

  27. Senev A, Coemans M, Lerut E, Van Sandt V, Kerkhofs J, Daniëls L, Driessche MV, Compernolle V, Sprangers B, Van Loon E, Callemeyn J, Claas F, Tambur AR, Verbeke G, Kuypers D, Emonds MP, Naesens M (2020) Eplet mismatch load and De novo occurrence of donor-specific anti-HLA antibodies, rejection, and graft failure after kidney transplantation: an observational cohort study. J Am Soc Nephrol 31:2193–2204. https://doi.org/10.1681/ASN.2020010019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dankers MK, Witvliet MD, Roelen DL, de Lange P, Korfage N, Persijn GG, Duquesnoy R, Doxiadis II, Claas FH (2004) The number of amino acid triplet differences between patient and donor is predictive for the antibody reactivity against mismatched human leukocyte antigens. Transplantation 77:1236–1239

    Article  CAS  PubMed  Google Scholar 

  29. Sapir-Pichhadze R, Tinckam K, Quach K, Logan AG, Laupacis A, John R, Beyene J, Kim SJ (2015) HLA-DR and -DQ eplet mismatches and transplant glomerulopathy: a nested case–control study. Am J Transplant 15:137–148

    Article  CAS  PubMed  Google Scholar 

  30. Wiebe C, Nevins TE, Robiner WN, Thomas W, Matas AJ, Nickerson PW (2015) The synergistic effect of class II HLA epitope-mismatch and nonadherence on acute rejection and graft survival. Am J Transplant 15:2197–2202

    Article  CAS  PubMed  Google Scholar 

  31. Tafulo S, Malheiro J, Santos S, Dias L, Almeida M, Martins LS, Pedroso S, Mendes C, Lobato L, Castro-Henriques A (2019) Degree of HLA class II eplet mismatch load improves prediction of antibody-mediated rejection in living donor kidney transplantation. Hum Immunol 80:966–975

    Article  CAS  PubMed  Google Scholar 

  32. Sapir-Pichhadze R, Zhang X, Ferradji A, Madbouly A, Tinckam KJ, Gebel HM, Blum D, Marrari M, Kim SJ, Fingerson S, Bashyal P, Cardinal H, Foster BJ (2020) Epitopes as characterized by antibody-verified eplet mismatches determine risk of kidney transplant loss. Kidney Int 97:778–785

    Article  CAS  PubMed  Google Scholar 

  33. Geneugelijk K, Spierings E (2018) Matching donor and recipient based on predicted indirectly recognizable human leucocyte antigen epitopes. Int J Immunogenet 45:41–53

    Article  CAS  PubMed  Google Scholar 

  34. Geneugelijk K, Spierings E (2020) PIRCHE-II: an algorithm to predict indirectly recognizable HLA epitopes in solid organ transplantation. Immunogenetics 72:119–129

    Article  PubMed  Google Scholar 

  35. National Kidney Registry. Kidney for Life Program. [cited 2020 November 21]; Available from: https://www.kidneyforlife.org/

  36. Syed B, Augustine JJ (2020) The National Kidney Registry: time to buy in? Clin J Am Soc Nephrol 15:168–170

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tassone G, De Santis D, Vukovic I, Downing J, Martinez OP, D'Orsogna LJ (2020) Different eplet software programs give discordant and incorrect results: an analysis of HLAMatchmaker vs fusion Matchmaker Eplet calling software. HLA 96:52–63

    Article  CAS  PubMed  Google Scholar 

  38. Patel R, Terasaki PI (1969) Significance of the positive crossmatch test in kidney transplantation. N Engl J Med 280:735–739

    Article  CAS  PubMed  Google Scholar 

  39. Mulley WR, Kanellis J (2011) Understanding crossmatch testing in organ transplantation: a case-based guide for the general nephrologist. Nephrology (Carlton) 16:125–133

    Article  Google Scholar 

  40. Carta P, Di Maria L, Caroti L, Buti E, Antognoli G, Minetti EE (2015) Anti-human leukocyte antigen DQ antibodies in renal transplantation: are we underestimating the most frequent donor specific alloantibodies? Transplant Rev (Orlando) 29:135–138

    Article  Google Scholar 

  41. Cross AR, Lion J, Loiseau P, Charron D, Taupin JL, Glotz D, Mooney N (2016) Donor specific antibodies are not only directed against HLA-DR: minding your Ps and Qs. Hum Immunol 77:1092–1100

    Article  CAS  PubMed  Google Scholar 

  42. Ling M, Marfo K, Masiakos P, Aljanabi A, Lindower J, Glicklich D, de Boccardo G, Greenstein S, Chapochnick-Friedmann J, Kayler L, Kinkhabwala M, Akalin E (2012) Pretransplant anti-HLA-Cw and anti-HLA-DP antibodies in sensitized patients. Hum Immunol 73:879–883

    Article  CAS  PubMed  Google Scholar 

  43. Qiu J, Cai J, Terasaki PI, El-Awar N, Lee JH (2005) Detection of antibodies to HLA-DP in renal transplant recipients using single antigen beads. Transplantation 80:1511–1513

    Article  CAS  PubMed  Google Scholar 

  44. Hörmann M, Dieplinger G, Rebellato LM, Briley KP, Bolin P, Morgan C, Haisch CE, Everly MJ (2016) Incidence and impact of anti-HLA-DP antibodies in renal transplantation. Clin Transpl 30:1108–1114

    Article  CAS  Google Scholar 

  45. Bachelet T, Martinez C, Del Bello A, Couzi L, Kejji S, Guidicelli G, Lepreux S, Visentin J, Congy-Jolivet N, Rostaing L, Taupin JL, Kamar N, Merville P (2016) Deleterious impact of donor-specific anti-HLA antibodies toward HLA-Cw and HLA-DP in kidney transplantation. Transplantation 100:159–166

  46. Daniëls L, Claas FHJ, Kramer CSM, Senev A, Vanden Driessche M, Emonds MP, Van Laecke S, Hellemans R, Abramowicz D, Naesens M (2020) The role of HLA-DP mismatches and donor specific HLA-DP antibodies in kidney transplantation: a case series. Transpl Immunol. https://doi.org/10.1016/j.trim.2020.101287

  47. Zhang Q, Reed EF (2016) The importance of non-HLA antibodies in transplantation. Nat Rev Nephrol 12:484–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dragun D, Müller DN, Bräsen JH, Fritsche L, Nieminen-Kelhä M, Dechend R, Kintscher U, Rudolph B, Hoebeke J, Eckert D, Mazak I, Plehm R, Schönemann C, Unger T, Budde K, Neumayer HH, Luft FC, Wallukat G (2005) Angiotensin II type 1-receptor activating antibodies in renal-allograft rejection. N Engl J Med 352:558–569

    Article  CAS  PubMed  Google Scholar 

  49. Zou Y, Stastny P, Süsal C, Döhler B, Opelz G (2007) Antibodies against MICA antigens and kidney-transplant rejection. N Engl J Med 357:1293–1300

    Article  CAS  PubMed  Google Scholar 

  50. Delville M, Lamarthée B, Pagie S, See SB, Rabant M, Burger C, Gatault P, Giral M, Thaunat O, Arzouk N, Hertig A, Hazzan M, Matignon M, Mariat C, Caillard S, Kamar N, Sayegh J, Westeel PF, Garrouste C, Ladrière M, Vuiblet V, Rivalan J, Merville P, Bertrand D, Le Moine A, Duong Van Huyen JP, Cesbron A, Cagnard N, Alibeu O, Satchell SC, Legendre C, Zorn E, Taupin JL, Charreau B, Anglicheau D (2019) Early acute microvascular kidney transplant rejection in the absence of anti-HLA antibodies is associated with preformed IgG antibodies against diverse glomerular endothelial cell antigens. J Am Soc Nephrol 30:692–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Philogene MC, Zhou S, Lonze BE, Bagnasco S, Alasfar S, Montgomery RA, Kraus E, Jackson AM, Leffell MS, Zachary AA (2018) Pre-transplant screening for non-HLA antibodies: who should be tested? Hum Immunol 79:195–202

    Article  PubMed  Google Scholar 

  52. Deltombe C, Gillaizeau F, Anglicheau D, Morelon E, Trébern-Launay K, Le Borgne F, Rimbert M, Guérif P, Malard-Castagnet S, Foucher Y, Giral M (2017) Is pre-transplant sensitization against angiotensin II type 1 receptor still a risk factor of graft and patient outcome in kidney transplantation in the anti-HLA Luminex era? A retrospective study. Transpl Int 30:1150–1160

    Article  CAS  PubMed  Google Scholar 

  53. Pinelli DF, Friedewald JJ, Haarberg KMK, Radhakrishnan SL, Zitzner JR, Hanshew WE, Tambur AR (2017) Assessing the potential of angiotensin II type 1 receptor and donor specific anti-endothelial cell antibodies to predict long-term kidney graft outcome. Hum Immunol 78:421–427

    Article  CAS  PubMed  Google Scholar 

  54. Banasik M, Boratyńska M, Kościelska-Kasprzak K, Kamińska D, Bartoszek D, Zabińska M, Myszka M, Zmonarski S, Protasiewicz M, Nowakowska B, Hałoń A, Chudoba P, Klinger M (2014) The influence of non-HLA antibodies directed against angiotensin II type 1 receptor (AT1R) on early renal transplant outcomes. Transpl Int 27:1029–1038

    Article  CAS  PubMed  Google Scholar 

  55. Lefaucheur C, Viglietti D, Bouatou Y, Philippe A, Pievani D, Aubert O, Duong Van Huyen JP, Taupin JL, Glotz D, Legendre C, Loupy A, Halloran PF, Dragun D (2019) Non-HLA agonistic anti-angiotensin II type 1 receptor antibodies induce a distinctive phenotype of antibody-mediated rejection in kidney transplant recipients. Kidney Int 96:189–201

    Article  CAS  PubMed  Google Scholar 

  56. Cuevas E, Arreola-Guerra JM, Hernández-Méndez EA, Salcedo I, Castelán N, Uribe-Uribe NO, Vilatobá M, Contreras-Saldívar AG, Sánchez-Cedillo AI, Ramírez JB, de Rungs D, Granados J, Morales-Buenrostro LE, Alberú J (2016) Pretransplant angiotensin II type 1-receptor antibodies are a risk factor for earlier detection of de novo HLA donor-specific antibodies. Nephrol Dial Transplant 31:1738–1745

    Article  CAS  PubMed  Google Scholar 

  57. Carroll RP, Deayton S, Emery T, Munasinghe W, Tsiopelas E, Fleet A, Lake M, Humphreys I, Jalalonmuhali M, Coates P (2019) Proactive treatment of angiotensin receptor antibodies in kidney transplantation with plasma exchange and/or candesartan is safe and associated with excellent graft survival at 4 years: a single centre Australian experience. Hum Immunol 80:573–578

    Article  CAS  PubMed  Google Scholar 

  58. Hart A, Smith JM, Skeans MA, Gustafson SK, Wilk AR, Castro S, Foutz J, Wainright JL, Snyder JJ, Kasiske BL, Israni AK (2020) OPTN/SRTR 2018 annual data report: kidney. Am J Transplant 20(Suppl s1):20–130

    Article  PubMed  Google Scholar 

  59. Colvin RB, Smith RN (2005) Antibody-mediated organ-allograft rejection. Nat Rev Immunol 5:807–817

    Article  CAS  PubMed  Google Scholar 

  60. Bloom RD, Bromberg JS, Poggio ED, Bunnapradist S, Langone AJ, Sood P, Matas AJ, Mehta S, Mannon RB, Sharfuddin A, Fischbach B, Narayanan M, Jordan SC, Cohen D, Weir MR, Hiller D, Prasad P, Woodward RN, Grskovic M, Sninsky JJ, Yee JP, Brennan DC, Circulating Donor-Derived Cell-Free DNA in Blood for Diagnosing Active Rejection in Kidney Transplant Recipients (DART) Study Investigators (2017) Cell-free DNA and active rejection in kidney allografts. J Am Soc Nephrol 28:2221–2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Erpicum P, Hanssen O, Weekers L, Lovinfosse P, Meunier P, Tshibanda L, Krzesinski JM, Hustinx R, Jouret F (2017) Non-invasive approaches in the diagnosis of acute rejection in kidney transplant recipients, part II: omics analyses of urine and blood samples. Clin Kidney J 10:106–115

    CAS  PubMed  Google Scholar 

  62. Beck J, Bierau S, Balzer S, Andag R, Kanzow P, Schmitz J, Gaedcke J, Moerer O, Slotta JE, Walson P, Kollmar O, Oellerich M, Schütz E (2013) Digital droplet PCR for rapid quantification of donor DNA in the circulation of transplant recipients as a potential universal biomarker of graft injury. Clin Chem 59:1732–1741

    Article  CAS  PubMed  Google Scholar 

  63. Knight SR, Thorne A, Lo Faro ML (2019) Donor-specific cell-free DNA as a biomarker in solid organ transplantation. A systematic review. Transplantation 103:273–283

    Article  CAS  PubMed  Google Scholar 

  64. Suzuki N, Kamataki A, Yamaki J, Homma Y (2008) Characterization of circulating DNA in healthy human plasma. Clin Chim Acta 387:55–58

    Article  CAS  PubMed  Google Scholar 

  65. Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, Knippers R (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665

  66. Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P (2001) About the possible origin and mechanism of circulating DNA: apoptosis and active DNA release. Clin Chim Acta 313:139–142

    Article  CAS  PubMed  Google Scholar 

  67. Lui YY, Woo KS, Wang AY, Yeung CK, Li PK, Chau E, Ruygrok P, Lo YM (2003) Origin of plasma cell-free DNA after solid organ transplantation. Clin Chem 49:495–496

    Article  CAS  PubMed  Google Scholar 

  68. Jordan SC, Bunnapradist S, Bromberg JS, Langone AJ, Hiller D, Yee JP, Sninsky JJ, Woodward RN, Matas AJ (2018) Donor-derived cell-free DNA identifies antibody-mediated rejection in donor specific antibody positive kidney transplant recipients. Transplant Direct 4:e379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Stites E, Kumar D, Olaitan O, John Swanson S, Leca N, Weir M, Bromberg J, Melancon J, Agha I, Fattah H, Alhamad T, Qazi Y, Wiseman A, Gupta G (2020) High levels of dd-cfDNA identify patients with TCMR 1A and borderline allograft rejection at elevated risk of graft injury. Am J Transplant 20:2491–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Moreira VG, García BP, Baltar Martín JM, Suárez FO, Alvarez FV (2009) Cell-free DNA as a noninvasive acute rejection marker in renal transplantation. Clin Chem 55:1958–1966

  71. Grskovic M, Hiller DJ, Eubank LA, Sninsky JJ, Christopherson C, Collins JP, Thompson K, Song M, Wang YS, Ross D, Nelles MJ, Yee JP, Wilber JC, Crespo-Leiro MG, Scott SL, Woodward RN (2016) Validation of a clinical-grade assay to measure donor-derived cell-free DNA in solid organ transplant recipients. J Mol Diagn 18:890–902

    Article  CAS  PubMed  Google Scholar 

  72. Altuğ Y, Liang N, Ram R, Ravi H, Ahmed E, Brevnov M, Swenerton RK, Zimmermann B, Malhotra M, Demko ZP, Billings PR, Ryan A (2019) Analytical validation of a single-nucleotide polymorphism-based donor-derived cell-free DNA assay for detecting rejection in kidney transplant patients. Transplantation 103:2657–2665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Li B, Hartono C, Ding R, Sharma VK, Ramaswamy R, Qian B, Serur D, Mouradian J, Schwartz JE, Suthanthiran M (2001) Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N Engl J Med 344:947–954

    Article  CAS  PubMed  Google Scholar 

  74. Suthanthiran M, Schwartz JE, Ding R, Abecassis M, Dadhania D, Samstein B, Knechtle SJ, Friedewald J, Becker YT, Sharma VK, Williams NM, Chang CS, Hoang C, Muthukumar T, August P, Keslar KS, Fairchild RL, Hricik DE, Heeger PS, Han L, Liu J, Riggs M, Ikle DN, Bridges ND, Shaked A, Clinical Trials in Organ Transplantation 04 (CTOT-04) Study Investigators (2013) Urinary-cell mRNA profile and acute cellular rejection in kidney allografts. N Engl J Med 369:20–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Crespo E, Roedder S, Sigdel T, Hsieh SC, Luque S, Cruzado JM, Tran TQ, Grinyó JM, Sarwal MM, Bestard O (2017) Molecular and functional noninvasive immune monitoring in the ESCAPE study for prediction of subclinical renal allograft rejection. Transplantation 101:1400–1409

    Article  CAS  PubMed  Google Scholar 

  76. Van Loon E, Giral M, Anglicheau D, Lerut E, Dubois V, Rabeyrin M, Brouard S, Roedder S, Spigarelli MG, Rabant M, Bogaerts K, Naesens M, Thaunat O (2020) Diagnostic performance of kSORT, a blood-based mRNA assay for noninvasive detection of rejection after kidney transplantation: a retrospective multicenter cohort study. Am J Transplant. https://doi.org/10.1111/ajt.16179

  77. Kaminski MM, Alcantar MA, Lape IT, Greensmith R, Huske AC, Valeri JA, Marty FM, Klämbt V, Azzi J, Akalin E, Riella LV, Collins JJ (2020) A CRISPR-based assay for the detection of opportunistic infections post-transplantation and for the monitoring of transplant rejection. Nat Biomed Eng 4:601–609

    Article  CAS  PubMed  Google Scholar 

  78. Dharnidharka VR, Malone A (2018) Biomarkers to detect rejection after kidney transplantation. Pediatr Nephrol 33:1113–1122

    Article  PubMed  Google Scholar 

  79. Ho J, Hirt-Minkowski P, Wilkins JA (2017) New developments in transplant proteomics. Curr Opin Nephrol Hypertens 26:229–234

    Article  CAS  PubMed  Google Scholar 

  80. Segerer S, Cui Y, Eitner F, Goodpaster T, Hudkins KL, Mack M, Cartron JP, Colin Y, Schlondorff D, Alpers CE (2001) Expression of chemokines and chemokine receptors during human renal transplant rejection. Am J Kidney Dis 37:518–531

    Article  CAS  PubMed  Google Scholar 

  81. Hirt-Minkowski P, Rush DN, Gao A, Hopfer H, Wiebe C, Nickerson PW, Schaub S, Ho J (2016) Six-month urinary CCL2 and CXCL10 levels predict long-term renal allograft outcome. Transplantation 100:1988–1996

    Article  CAS  PubMed  Google Scholar 

  82. Metzger J, Chatzikyrkou C, Broecker V, Schiffer E, Jaensch L, Iphoefer A, Mengel M, Mullen W, Mischak H, Haller H, Gwinner W (2011) Diagnosis of subclinical and clinical acute T-cell-mediated rejection in renal transplant patients by urinary proteome analysis. Proteomics Clin Appl 5:322–333

    Article  CAS  PubMed  Google Scholar 

  83. Suhre K, Schwartz JE, Sharma VK, Chen Q, Lee JR, Muthukumar T, Dadhania DM, Ding R, Ikle DN, Bridges ND, Williams NM, Kastenmüller G, Karoly ED, Mohney RP, Abecassis M, Friedewald J, Knechtle SJ, Becker YT, Samstein B, Shaked A, Gross SS, Suthanthiran M (2016) Urine metabolite profiles predictive of human kidney allograft status. J Am Soc Nephrol 27:626–636

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isa F. Ashoor.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Answers:

1. C; 2. B; 3. C; 4. C; 5. B

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ehlayel, A., Simms, K.J.A. & Ashoor, I.F. Emerging monitoring technologies in kidney transplantation. Pediatr Nephrol 36, 3077–3087 (2021). https://doi.org/10.1007/s00467-021-04929-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-021-04929-9

Keywords

Navigation