The old becomes new: advances in imaging techniques to assess nephron mass in children

Abstract

Renal imaging is widely used in the assessment of surrogate markers of nephron mass correlated to renal function. Autopsy studies have tested the validity of various imaging modalities in accurately estimating “true” nephron mass. However, in vivo assessment of nephron mass has been largely limited to kidney volume determination by ultrasonography (US) in pediatric populations. Practical limitations and risks create challenges in incorporating more precise 3D volumetric imaging, like magnetic resonance imaging (MRI), and computed tomography (CT) technologies, compared to US for routine kidney volume assessment in children. Additionally, accounting for structural anomalies such as hydronephrosis when estimating renal parenchymal area in congenital anomalies of the kidney and urinary tract (CAKUT) is important, as it correlates with chronic kidney disease (CKD) progression. 3D imaging using CT and MRI has been shown to be superior to US, which has traditionally relied on 2D measurements to estimate kidney volume using the ellipsoid calculation. Recent innovations using 3D and contrast-enhanced US (CEUS) provide improved accuracy with low risk. Indexing kidney volume to body surface area in children is an important standard that may allow early detection of CKD progression in high-risk populations. This review highlights current understanding of various imaging modalities in assessing nephron mass, discusses applications and limitations, and describes recent advances in the field of imaging and kidney disease. Although renal imaging has been a long-standing, essential tool in assessing kidney disease, innovation and new applications of established technologies provide important tools in the study and management of kidney disease in children.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Hodson CJ, Drewe JA, Karn MN, King A (1962) Renal size in normal children: a radiographic study during life. Arch Dis Child 37:616–622

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Karn MN (1962) Radiographic measurements of kidney section area. Ann Hum Genet 25:379–385

    CAS  PubMed  Google Scholar 

  3. 3.

    Eklof O, Ringertz H (1976) Kidney size in children. A method of assessment. Acta Radiol Diagn (Stockh) 17:617–625

    CAS  Google Scholar 

  4. 4.

    Hodson CJ, Davies Z, Prescod A (1975) Renal parenchymal radiographic measurement in infants and children. Pediatr Radiol 24:16–19

    Google Scholar 

  5. 5.

    Chaesson I, Jacobsson B, Olsson T, Ringertz H (1981) Assessment of renal parenchymal thickness in normal children. Acta Radiol Diagn (Stockh) 22:305–314

    Google Scholar 

  6. 6.

    Han BK, Babcock DS (1985) Sonographic measurements and appearance of normal kidneys in children. AJR Am J Roentgenol 145:611–616

    CAS  PubMed  Google Scholar 

  7. 7.

    Dinkel E, Ertel M, Dittrich M, Peters H, Berres M, Schulte-Wissermann H (1985) Kidney size in childhood. Sonological growth charts for kidney length and volume. Pediatr Radiol 15:38–43

    CAS  PubMed  Google Scholar 

  8. 8.

    Hederstrom E, Forsberg L (1985) Kidney size in children assessed by ultrasonography and urography. Acta Radiol Diagn (Stockh) 26:85–91

    CAS  Google Scholar 

  9. 9.

    Cohen HL, Cooper J, Eisenberg P, Mandel FS, Gross BR, Goldman MA, Barzel E, Rawlinson KF (1991) Normal length of fetal kidneys: sonographic study in 397 obstetric patients. AJR Am J Roentgenol 157:545–548

    CAS  PubMed  Google Scholar 

  10. 10.

    Fernbach SK, Maizels M, Conway JJ (1993) Ultrasound grading of hydronephrosis: introduction to the system used by the Society for Fetal Urology. Pediatr Radiol 23:478–480

    CAS  PubMed  Google Scholar 

  11. 11.

    Gloor JM, Breckle RJ, Gehrking WC, Rosenquist RG, Mulholland TA, Bergstralh EJ, Ramin KD, Ogburn PL Jr (1997) Fetal renal growth evaluated by prenatal ultrasound examination. Mayo Clin Proc 72:124–129

    CAS  PubMed  Google Scholar 

  12. 12.

    Shin JS, Seo YS, Kim JH, Park KH (2007) Nomogram of fetal renal growth expressed in length and parenchymal area derived from ultrasound images. J Urol 178:2150–2154

    PubMed  Google Scholar 

  13. 13.

    Kim HC, Yang DM, Lee SH, Cho YD (2008) Usefulness of renal volume measurements obtained by 3-dimensional sonographic transducer with matrix electronic arrays. J Ultrasound Med 27:1673–1681

    PubMed  Google Scholar 

  14. 14.

    Sargent MA, Gupta SC (1993) Sonographic measurement of relative renal volume in children: comparison with scintigraphic determination of relative renal function. AJR Am J Roentgenol 161:157–160

    CAS  PubMed  Google Scholar 

  15. 15.

    Puelles VG, Kanzaki G, Bertram JF (2016) Indirect estimation of nephron number: a new tool to predict outcomes in renal transplantation? Nephrol Dial Transplant 31:1378–1380

    PubMed  Google Scholar 

  16. 16.

    Gupta S, Singh AH, Shabbir A, Hahn PF, Harris G, Sahani D (2012) Assessing renal parenchymal volume on unenhanced CT as a marker for predicting renal function in patients with chronic kidney disease. Acad Radiol 19:654–660

    PubMed  Google Scholar 

  17. 17.

    Mitsui Y, Sadahira T, Araki M, Wada K, Tanimoto R, Ariyoshi Y, Kobayashi Y, Watanabe M, Watanabe T, Nasu Y (2018) The assessment of renal cortex and parenchymal volume using automated CT volumetry for predicting renal function after donor nephrectomy. Clin Exp Nephrol 22:453–458

    CAS  PubMed  Google Scholar 

  18. 18.

    Sasaki T, Tsuboi N, Okabayashi Y, Haruhara K, Kanzaki G, Koike K, Kobayashi A, Yamamoto I, Takahashi S, Ninomiya T, Shimizu A, Rule AD, Bertram JF, Yokoo T (2019) Estimation of nephron number in living humans by combining unenhanced computed tomography with biopsy-based stereology. Sci Rep 9:14400

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Puelles VG, Hoy WE, Hughson MD, Diouf B, Douglas-Denton RN, Bertram JF (2011) Glomerular number and size variability and risk for kidney disease. Curr Opin Nephrol Hypertens 20:7–15

    PubMed  Google Scholar 

  20. 20.

    Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE (2011) Human nephron number: implications for health and disease. Pediatr Nephrol 26:1529–1533

    PubMed  Google Scholar 

  21. 21.

    Abitbol CL, Seeherunvong W, Galarza MG, Katsoufis C, Francoeur D, Defreitas M, Edwards-Richards A, Master Sankar Raj V, Chandar J, Duara S, Yasin S, Zilleruelo G (2014) Neonatal kidney size and function in preterm infants: what is a true estimate of glomerular filtration rate? J Pediatr 164:1026–1031

    PubMed  Google Scholar 

  22. 22.

    Iyengar A, Nesargi S, George A, Sinha N, Selvam S, Luyckx VA (2016) Are low birth weight neonates at risk for suboptimal renal growth and function during infancy? BMC Nephrol 17:100

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Geelhoed JJ, Taal HR, Steegers EA, Arends LR, Lequin M, Moll HA, Hofman A, van der Heijden AJ, Jaddoe VW (2010) Kidney growth curves in healthy children from the third trimester of pregnancy until the age of two years. The Generation R Study. Pediatr Nephrol 25:289–298

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Kooijman MN, Bakker H, van der Heijden AJ, Hofman A, Franco OH, Steegers EA, Taal HR, Jaddoe VW (2014) Childhood kidney outcomes in relation to fetal blood flow and kidney size. J Am Soc Nephrol 25:2616–2624

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Rakow A, Laestadius Å, Liliemark U, Backheden M, Legnevall L, Kaiser S, Vanpée M (2019) Kidney volume, kidney function, and ambulatory blood pressure in children born extremely preterm with and without nephrocalcinosis. Pediatr Nephrol 34:1765–1776

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Di Zazzo G, Stringini G, Matteucci MC, Muraca M, Malena S, Emma F (2011) Serum creatinine levels are significantly influenced by renal size in the normal pediatric population. Clin J Am Soc Nephrol 6:107–113

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Chevalier RL (2014) The life cycle of the kidney: implications for CKD. J Am Soc Nephrol 25:2388–2390

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Hommos MS, Glassock RJ, Rule AD (2017) Structural and functional changes in human kidneys with healthy aging. J Am Soc Nephrol 28:2838–2844

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Wang X, Vrtiska TJ, Avula RT, Walters LR, Chakkera HA, Kremers WK, Lerman LO, Rule AD (2014) Age, kidney function, and risk factors associate differently with cortical and medullary volumes of the kidney. Kidney Int 85:677–685

    CAS  PubMed  Google Scholar 

  30. 30.

    Tan JC, Paik J, Chertow GM, Grumet FC, Busque S, Lapasia J, Desai M (2011) Validity of surrogate measures for functional nephron mass. Transplantation 92:1335–1341

    PubMed  PubMed Central  Google Scholar 

  31. 31.

    Nyengaard JR, Bendtsen TF (1992) Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 232:194–201

    CAS  Google Scholar 

  32. 32.

    Zhang Z, Quinlan J, Hoy W, Hughson MD, Lemire M, Hudson T, Hueber PA, Benjamin A, Roy A, Pascuet E, Goodyer M, Raju C, Houghton F, Bertram J, Goodyer P (2008) A common RET variant is associated with reduced newborn kidney size and function. J Am Soc Nephrol 19:2027–2034

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Koike K, Ikezumi Y, Tsuboi N, Kanzaki G, Haruhara K, Okabayashi Y, Sasaki T, Ogura M, Saitoh A, Yokoo T (2017) Glomerular density and volume in renal biopsy specimens of children with proteinuria relative to preterm birth and gestational age. Clin J Am Soc Nephrol 12:585–590

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Charlton JR, Abitbol CL (2017) Can renal biopsy be used to estimate total nephron number? Clin J Am Soc Nephrol 12:553–555

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Luyckx VA, Brenner BM (2010) The clinical importance of nephron mass. J Am Soc Nephrol 21:898–910

    Google Scholar 

  36. 36.

    Hoy WE, Bertram JF, Denton RD, Zimanyi M, Samuel T, Hughson MD (2008) Nephron number, glomerular volume, renal disease and hypertension. Curr Opin Nephrol Hypertens 17:258–265

    Google Scholar 

  37. 37.

    Granda ML, Amarapurkar P, Fornoni A (2018) Probing insulin sensitivity in diabetic kidney disease: is there a stronger role for functional imaging? Clin Sci (Lond) 132:1085–1095

    CAS  Google Scholar 

  38. 38.

    Moorthy HK, Venugopal P (2011) Measurement of renal dimensions in vivo: a critical appraisal. Indian J Urol 27:169–175

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Scholbach T, Weitzel D (2012) Body-surface-area related renal volume: a common normal range from birth to adulthood. Scientifica (Cairo) 2012:949164

    Google Scholar 

  40. 40.

    Cheong B, Muthupillai R, Rubin MF, Flamm SD (2007) Normal values for renal length and volume as measured by magnetic resonance imaging. Clin J Am Soc Nephrol 2:38–45

    PubMed  Google Scholar 

  41. 41.

    Griffiths GJ, Robinson KB, Cartwright GO, McLachlan MS (1976) Loss of renal tissue in the elderly. Br J Radiol 49:111–117

    CAS  PubMed  Google Scholar 

  42. 42.

    Rasmussen SN, Haase L, Kjeldsen H, Hancke S (1978) Determination of renal volume by ultrasound scanning. J Clin Ultrasound 6:160–164

    CAS  PubMed  Google Scholar 

  43. 43.

    Thakur V, Watkins T, McCarthy K, Beidl T, Underwood N, Barnes K, Cook ME (1997) Is kidney length a good predictor of kidney volume? Am J Med Sci 313:85–89

    CAS  PubMed  Google Scholar 

  44. 44.

    D'Souza RC, Kotre CJ, Owen JP, Keir MJ, Ward MK, Wilkinson R (1995) Computed tomography evaluation of renal parenchymal volume in patients with chronic pyelonephritis and its relationship to glomerular filtration rate. Br J Radiol 68:130–133

    CAS  PubMed  Google Scholar 

  45. 45.

    Widjaja E, Oxtoby JW, Hale TL, Jones PW, Harden PN, McCall IW (2004) Ultrasound measured renal length versus low dose CT volume in predicting single kidney glomerular filtration rate. Br J Radiol 77:759–764

    CAS  PubMed  Google Scholar 

  46. 46.

    Bakker J, Olree M, Kaatee R, de Lange EE, Beek FJ (1998) In vitro measurement of kidney size: comparison of ultrasonography and MRI. Ultrasound Med Biol 24:683–688

    CAS  PubMed  Google Scholar 

  47. 47.

    Bakker J, Olree M, Kaatee R, de Lange EE, Moons KG, Beutler JJ, Beek FJ (1999) Renal volume measurements: accuracy and repeatability of US compared with that of MR imaging. Radiology 211:623–628

    CAS  PubMed  Google Scholar 

  48. 48.

    Sasaki T, Tsuboi N, Kanzaki G, Haruhara K, Okabayashi Y, Koike K, Kobayashi A, Yamamoto I, Ogura M, Hoy WE, Bertram JF, Shimizu A, Yokoo T (2019) Biopsy-based estimation of total nephron number in Japanese living kidney donors. Clin Exp Nephrol 23:629–637

    Google Scholar 

  49. 49.

    Breysem L, De Rechter S, De Keyzer F, Smet MH, Bammens B, Van Dyck M, Hofmans M, Oyen R, Levtchenko E, Mekahli D (2018) 3DUS as an alternative to MRI for measuring renal volume in children with autosomal dominant polycystic kidney disease. Pediatr Nephrol 33:827–835

    PubMed  Google Scholar 

  50. 50.

    Mekahli D, Ong ACM, Pape L, Titieni A, Torra R, Winyard PJD, Schaefer F (2019) Imaging of kidney cysts and cystic kidney diseases in children: an international working group consensus statement. Radiology 290:769–782

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Partik BL, Stadler A, Schamp S, Koller A, Voracek M, Heinz G, Helbich TH (2002) 3D versus 2D ultrasound: accuracy of volume measurement in human cadaver kidneys. Investig Radiol 37:489–495

    Google Scholar 

  52. 52.

    Kent AL, Jyoti R, Robertson C, Gonsalves L, Meskell S, Shadbolt B, Falk MC (2010) Are renal volumes measured by magnetic resonance imaging and three-dimensional ultrasound in the term neonate comparable? Pediatr Nephrol 25:913–918

    PubMed  Google Scholar 

  53. 53.

    Quinlan J, Lemire M, Hudson T, Qu H, Benjamin A, Roy A, Pascuet E, Goodyer M, Raju C, Zhang Z, Houghton F, Goodyer P (2007) A common variant of the PAX2 gene is associated with reduced newborn kidney size. J Am Soc Nephrol 18:1915–1921

    CAS  Google Scholar 

  54. 54.

    Wang H, Pulido JE, Song Y, Furth SL, Tu C, Zhang C, Li C, Tasian GE (2014) Segmentation of renal parenchymal area from ultrasound images using level set evolution. Conf Proc IEEE Eng Med Biol Soc 2014:4703–4706

    Google Scholar 

  55. 55.

    Pulido JE, Furth SL, Zderic SA, Canning DA, Tasian GE (2014) Renal parenchymal area and risk of ESRD in boys with posterior urethral valves. Clin J Am Soc Nephrol 9:499–505

    PubMed  Google Scholar 

  56. 56.

    Moscardi PRM, Katsoufis CP, Jahromi M, Blachman-Braun R, DeFreitas MJ, Kozakowski K, Castellan M, Labbie A, Gosalbez R, Alam A (2018) Prenatal renal parenchymal area as a predictor of early end-stage renal disease in children with vesicoamniotic shunting for lower urinary tract obstruction. J Pediatr Urol 14:320.e321–320.e326

    Google Scholar 

  57. 57.

    Ntoulia A, Anupindi SA, Darge K, Back SJ (2018) Applications of contrast-enhanced ultrasound in the pediatric abdomen. Abdom Radiol (NY) 43:948–959

    Google Scholar 

  58. 58.

    Bertolotto M, Bucci S, Valentino M, Curro F, Sachs C, Cova MA (2018) Contrast-enhanced ultrasound for characterizing renal masses. Eur J Radiol 105:41–48

    PubMed  Google Scholar 

  59. 59.

    Prevost R, Mory B, Cuingnet R, Correas JM, Cohen LD, Ardon R (2014) Kidney Detection and Segmentation in Contrast-Enhanced Ultrasound 3D Images. In: El-Baz A., Saba L., Suri J. (eds) Abdomen and Thoracic Imaging. Springer: Boston

  60. 60.

    Lu L, Sedor JR, Gulani V, Schelling JR, O'Brien A, Flask CA, MacRae Dell K (2011) Use of diffusion tensor MRI to identify early changes in diabetic nephropathy. Am J Nephrol 34:476–482

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Mora-Gutierrez JM, Garcia-Fernandez N, Slon Roblero MF, Paramo JA, Escalada FJ, Wang DJ, Benito A, Fernandez-Seara MA (2017) Arterial spin labeling MRI is able to detect early hemodynamic changes in diabetic nephropathy. J Magn Reson Imaging 46:1810–1817

    PubMed  Google Scholar 

  62. 62.

    Ritt M, Janka R, Schneider MP, Martirosian P, Hornegger J, Bautz W, Uder M, Schmieder RE (2010) Measurement of kidney perfusion by magnetic resonance imaging: comparison of MRI with arterial spin labeling to para-aminohippuric acid plasma clearance in male subjects with metabolic syndrome. Nephrol Dial Transplant 25:1126–1133

    CAS  PubMed  Google Scholar 

  63. 63.

    Poirier JY, Moisan A, Le Cloirec J, Siemen C, Yaouanq J, Edan G, Herry JY (1990) Renal scintigraphy in insulin-dependent diabetes mellitus: early glomerular and urologic dysfunction. J Diabet Complicat 4:113–118

    CAS  Google Scholar 

  64. 64.

    Radermacher J, Ellis S, Haller H (2002) Renal resistance index and progression of renal disease. Hypertension 39:699–703

    CAS  PubMed  Google Scholar 

  65. 65.

    Kim JH, Lee SM, Son YK, Kim SE, An WS (2017) Resistive index as a predictor of renal progression in patients with moderate renal dysfunction regardless of angiotensin converting enzyme inhibitor or angiotensin receptor antagonist medication. Kidney Res Clin Pract 36:58–67

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Meola M, Samoni S, Petrucci I (2016) Imaging in chronic kidney disease. Contrib Nephrol 188:69–80

    PubMed  Google Scholar 

  67. 67.

    Yaprak M, Cakir O, Turan MN, Dayanan R, Akin S, Degirmen E, Yildirim M, Turgut F (2017) Role of ultrasonographic chronic kidney disease score in the assessment of chronic kidney disease. Int Urol Nephrol 49:123–131

    CAS  PubMed  Google Scholar 

  68. 68.

    Bennett KM, Beeman SC, Baldelomar EJ, Zhang M, Wu T, Hann BD, Bertram JF, Charlton JR (2016) Use of cationized ferritin nanoparticles to measure renal glomerular microstructure with MRI. Methods Mol Biol 1397:67–79

    CAS  PubMed  Google Scholar 

  69. 69.

    Beeman SC, Georges JF, Bennett KM (2013) Toxicity, biodistribution, and ex vivo MRI detection of intravenously injected cationized ferritin. Magn Reson Med 69:853–861

    CAS  PubMed  Google Scholar 

  70. 70.

    Charlton JR, Pearl VM, Denotti AR, Lee JB, Swaminathan S, Scindia YM, Charlton NP, Baldelomar EJ, Beeman SC, Bennett KM (2016) Biocompatibility of ferritin-based nanoparticles as targeted MRI contrast agents. Nanomedicine 12:1735–1745

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Bennett KM, Zhou H, Sumner JP, Dodd SJ, Bouraoud N, Doi K, Star RA, Koretsky AP (2008) MRI of the basement membrane using charged nanoparticles as contrast agents. Magn Reson Med 60:564–574

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Beeman SC, Cullen-McEwen LA, Puelles VG, Zhang M, Wu T, Baldelomar EJ, Dowling J, Charlton JR, Forbes MS, Ng A, Wu QZ, Armitage JA, Egan GF, Bertram JF, Bennett KM (2014) MRI-based glomerular morphology and pathology in whole human kidneys. Am J Physiol Renal Physiol 306:F1381–F1390

    CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Baldelomar EJ, Charlton JR, Beeman SC, Bennett KM (2018) Measuring rat kidney glomerular number and size in vivo with MRI. Am J Physiol Renal Physiol 314:F399–F406

    PubMed  Google Scholar 

  74. 74.

    Qian C, Yu X, Chen DY, Dodd S, Bouraoud N, Pothayee N, Chen Y, Beeman S, Bennett K, Murphy-Boesch J, Koretsky A (2013) Wireless amplified nuclear MR detector (WAND) for high-spatial-resolution MR imaging of internal organs: preclinical demonstration in a rodent model. Radiology 268:228–236

    PubMed  PubMed Central  Google Scholar 

  75. 75.

    Qian C, Yu X, Pothayee N, Dodd S, Bouraoud N, Star R, Bennett K, Koretsky A (2014) Live nephron imaging by MRI. Am J Physiol Renal Physiol 307:F1162–F1168

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Timilsina R, Qian C (2019) A novel expandable catheter wireless amplified NMR detector for MR sensitivity accessing the kidney in rodent model. IEEE Trans Biomed Circuits Syst 13:444–453

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Zhou HY, Chen TW, Zhang XM (2016) Functional magnetic resonance imaging in acute kidney injury: present status. Biomed Res Int 2016:2027370

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    van Raaij S, van Swelm R, Bouman K, Cliteur M, van den Heuvel MC, Pertijs J, Patel D, Bass P, van Goor H, Unwin R, Srai SK, Swinkels D (2018) Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease. Sci Rep 8:9353

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marissa J. DeFreitas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Answers

1. b; 2. b; 3. d; 4. a; 5. d

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

DeFreitas, M.J., Katsoufis, C.P., Infante, J.C. et al. The old becomes new: advances in imaging techniques to assess nephron mass in children. Pediatr Nephrol 36, 517–525 (2021). https://doi.org/10.1007/s00467-020-04477-8

Download citation

Keywords

  • Nephron mass
  • Kidney volume
  • Renal imaging
  • Children
  • Chronic kidney disease
  • Ultrasound