New therapeutic perspectives for IgA nephropathy in children

Abstract

Childhood IgA nephropathy (cIgAN) differs from the adult by having an abrupt clinical onset, often presenting as an acute attack that can progress to a chronic phase. No treatment guidelines have been established for the treatment of cIgAN. Given the severity of acute attack in children, and the number of life-years at stake, pediatricians prescribe immunosuppression in addition to renin–angiotensin system blockade. Non-specific immunosuppressors, such as corticosteroids, have systemic toxic effects, and given recent therapeutic advances in adult glomerulonephritis, new tailored strategies should be expected for children. The mucosal immune system has been highlighted as a key player in IgAN pathogenesis, and several biomarkers have been identified with a direct role in pathogenesis. In this review, we discuss current studies of conventional and novel therapeutic approaches for cIgAN.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Coppo R, Gianoglio B, Porcellini MG, Maringhini S (1998) Frequency of renal diseases and clinical indications for renal biopsy in children (report of the Italian National Registry of renal biopsies in children). Group of Renal Immunopathology of the Italian Society of Pediatric Nephrology. Nephrol Dial Transplant 13:293–297

    CAS  PubMed  Google Scholar 

  2. 2.

    Robert T, Berthelot L, Cambier A, Rondeau E, Monteiro RC (2015) Molecular insights into the pathogenesis of IgA nephropathy. Trends Mol Med 21:762–775

    CAS  PubMed  Google Scholar 

  3. 3.

    Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Cattran DC, Coppo R, Cook HT, Feehally J, Roberts IS, Troyanov S, Alpers CE, Amore A, Barratt J, Berthoux F, Bonsib S, Bruijn JA, D’Agati V, D’Amico G, Emancipator S, Emma F, Ferrario F, Fervenza FC, Florquin S, Fogo A, Geddes CC, Groene HJ, Haas M, Herzenberg AM, Hill PA, Hogg RJ, Hsu SI, Jennette JC, Joh K, Julian BA, Kawamura T, Lai FM, Leung CB, Li LS, Li PK, Liu ZH, Mackinnon B, Mezzano S, Schena FP, Tomino Y, Walker PD, Wang H, Weening JJ, Yoshikawa N, Zhang H (2009) The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int 76:534–545

    Google Scholar 

  4. 4.

    Kamei K, Harada R, Hamada R, Sakai T, Hamasaki Y, Hataya H, Ito S, Ishikura K, Honda M (2016) Proteinuria during follow-up period and long-term renal survival of childhood IgA nephropathy. PLoS One 11:e0150885

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Coppo R (2017) Clinical and histological risk factors for progression of IgA nephropathy: an update in children, young and adult patients. J Nephrol 30:339–346

    CAS  PubMed  Google Scholar 

  6. 6.

    Gale DP, Molyneux K, Wimbury D, Higgins P, Levine AP, Caplin B, Ferlin A, Yin P, Nelson CP, Stanescu H, Samani NJ, Kleta R, Yu X, Barratt J (2017) Galactosylation of IgA1 is associated with common variation in C1GALT1. J Am Soc Nephrol 28:2158–2166

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Hall YN, Fuentes EF, Chertow GM, Olson JL (2004) Race/ethnicity and disease severity in IgA nephropathy. BMC Nephrol 5:10

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Koyama A, Igarashi M, Kobayashi M (1997) Natural history and risk factors for immunoglobulin a nephropathy in Japan. Research group on progressive renal diseases. Am J Kidney Dis 29:526–532

    CAS  PubMed  Google Scholar 

  9. 9.

    Wyatt RJ, Kritchevsky SB, Woodford SY, Miller PM, Roy S 3rd, Holland NH, Jackson E, Bishof NA (1995) IgA nephropathy: long-term prognosis for pediatric patients. J Pediatr 127:913–919

    CAS  PubMed  Google Scholar 

  10. 10.

    Radford MG Jr, Donadio JV Jr, Bergstralh EJ, Grande JP (1997) Predicting renal outcome in IgA nephropathy. J Am Soc Nephrol 8:199–207

    PubMed  Google Scholar 

  11. 11.

    Hastings MC, Delos Santos NM, Wyatt RJ (2007) Renal survival in pediatric patients with IgA nephropathy. Pediatr Nephrol 22:317–318

    PubMed  Google Scholar 

  12. 12.

    Ronkainen J, Ala-Houhala M, Autio-Harmainen H, Jahnukainen T, Koskimies O, Merenmies J, Mustonen J, Ormala T, Turtinen J, Nuutinen M (2006) Long-term outcome 19 years after childhood IgA nephritis: a retrospective cohort study. Pediatr Nephrol 21:1266–1273

    PubMed  Google Scholar 

  13. 13.

    Wang T, Ye F, Meng H, Zhang L, Jin X (2012) Comparison of clinicopathological features between children and adults with IgA nephropathy. Pediatr Nephrol 27:1293–1300

    PubMed  Google Scholar 

  14. 14.

    Haas M, Rahman MH, Cohn RA, Fathallah-Shaykh S, Ansari A, Bartosh SM (2008) IgA nephropathy in children and adults: comparison of histologic features and clinical outcomes. Nephrol Dial Transplant 23:2537–2545

    PubMed  Google Scholar 

  15. 15.

    Shima Y, Nakanishi K, Hama T, Sato M, Mukaiyama H, Togawa H, Tanaka R, Kaito H, Nozu K, Iijima K, Yoshikawa N (2015) Biopsy timing and Oxford classification variables in childhood/adolescent IgA nephropathy. Pediatr Nephrol 30:293–299

    PubMed  Google Scholar 

  16. 16.

    Moura IC, Arcos-Fajardo M, Sadaka C, Leroy V, Benhamou M, Novak J, Vrtovsnik F, Haddad E, Chintalacharuvu KR, Monteiro RC (2004) Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J Am Soc Nephrol 15:622–634

    CAS  PubMed  Google Scholar 

  17. 17.

    Kiryluk K, Novak J (2014) The genetics and immunobiology of IgA nephropathy. J Clin Invest 124:2325–2332

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Hastings MC, Afshan S, Sanders JT, Kane O, Eison TM, Lau KK, Moldoveanu Z, Julian BA, Novak J, Wyatt RJ (2012) Serum galactose-deficient IgA1 level is not associated with proteinuria in children with IgA nephropathy. Int J Nephrol 2012:315467

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Kiryluk K, Moldoveanu Z, Sanders JT, Eison TM, Suzuki H, Julian BA, Novak J, Gharavi AG, Wyatt RJ (2011) Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch–Schonlein purpura nephritis. Kidney Int 80:79–87

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Mizerska-Wasiak M, Gajewski L, Cichon-Kawa K, Maldyk J, Dziedzic-Jankowska K, Leszczynska B, Rybi-Szuminska A, Wasilewska A, Pukajlo-Marczyk A, Zwolinska D, Bienias B, Sikora P, Szczepanska M, Stelmaszczyk-Emmel A, Gorska E, Panczyk-Tomaszewska M (2018) Serum GDIgA1 levels in children with IgA nephropathy and Henoch–Schonlein nephritis. Cent Eur J Immunol 43:162–167

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Suzuki Y, Suzuki H, Yasutake J, Tomino Y (2015) Paradigm shift in activity assessment of IgA nephropathy—optimizing the next generation of diagnostic and therapeutic maneuvers via glycan targeting. Expert Opin Biol Ther 15:583–593

    CAS  PubMed  Google Scholar 

  22. 22.

    Lamm ME, Emancipator SN, Robinson JK, Yamashita M, Fujioka H, Qiu J, Plaut AG (2008) Microbial IgA protease removes IgA immune complexes from mouse glomeruli in vivo: potential therapy for IgA nephropathy. Am J Pathol 172:31–36

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Lechner SM, Abbad L, Boedec E, Papista C, Le Stang MB, Moal C, Maillard J, Jamin A, Bex-Coudrat J, Wang Y, Li A, Martini PG, Monteiro RC, Berthelot L (2016) IgA1 protease treatment reverses mesangial deposits and hematuria in a model of IgA nephropathy. J Am Soc Nephrol 27:2622–2629

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Yang R, Otten MA, Hellmark T, Collin M, Bjorck L, Zhao MH, Daha MR, Segelmark M (2010) Successful treatment of experimental glomerulonephritis with IdeS and EndoS, IgG-degrading streptococcal enzymes. Nephrol Dial Transplant 25:2479–2486

    CAS  PubMed  Google Scholar 

  25. 25.

    Soveri I, Molne J, Uhlin F, Nilsson T, Kjellman C, Sonesson E, Segelmark M (2019) The IgG-degrading enzyme of Streptococcus pyogenes causes rapid clearance of anti-glomerular basement membrane antibodies in patients with refractory anti-glomerular basement membrane disease. Kidney Int 96:1234–1238

    CAS  PubMed  Google Scholar 

  26. 26.

    Higa A, Shima Y, Hama T, Sato M, Mukaiyama H, Togawa H, Tanaka R, Nozu K, Sako M, Iijima K, Nakanishi K, Yoshikawa N (2015) Long-term outcome of childhood IgA nephropathy with minimal proteinuria. Pediatr Nephrol 30:2121–2127

    PubMed  Google Scholar 

  27. 27.

    Coppo R, Peruzzi L, Amore A, Piccoli A, Cochat P, Stone R, Kirschstein M, Linne T (2007) IgACE: a placebo-controlled, randomized trial of angiotensin-converting enzyme inhibitors in children and young people with IgA nephropathy and moderate proteinuria. J Am Soc Nephrol 18:1880–1888

    CAS  PubMed  Google Scholar 

  28. 28.

    Coppo R, Amore A, Gianoglio B, Cacace G, Picciotto G, Roccatello D, Peruzzi L, Piccoli G, De Filippi PG (1993) Angiotensin II local hyperreactivity in the progression of IgA nephropathy. Am J Kidney Dis 21:593–602

    CAS  PubMed  Google Scholar 

  29. 29.

    Lai KN, Tang SC, Guh JY, Chuang TD, Lam MF, Chan LY, Tsang AW, Leung JC (2003) Polymeric IgA1 from patients with IgA nephropathy upregulates transforming growth factor-beta synthesis and signal transduction in human mesangial cells via the renin–angiotensin system. J Am Soc Nephrol 14:3127–3137

    CAS  PubMed  Google Scholar 

  30. 30.

    Leung JC, Chan LY, Tang SC, Lam MF, Chow CW, Lim AI, Lai KN (2011) Oxidative damages in tubular epithelial cells in IgA nephropathy: role of crosstalk between angiotensin II and aldosterone. J Transl Med 9:169

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ye ZC, Wang C, Tang Y, Liu X, Peng H, Zhang H, Lou TQ (2009) Serum IgA1 from patients with IgA nephropathy up-regulates integrin-linked kinase synthesis and inhibits adhesive capacity in podocytes through indirect pathways. Clin Invest Med 32:E20–E27

    CAS  PubMed  Google Scholar 

  32. 32.

    Zhang B, Xie S, Shi W, Yang Y (2012) Amiloride off-target effect inhibits podocyte urokinase receptor expression and reduces proteinuria. Nephrol Dial Transplant 27:1746–1755

    CAS  PubMed  Google Scholar 

  33. 33.

    Trimarchi H (2013) Primary focal and segmental glomerulosclerosis and soluble factor urokinase-type plasminogen activator receptor. World J Nephrol 2:103–110

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Wei C, Moller CC, Altintas MM, Li J, Schwarz K, Zacchigna S, Xie L, Henger A, Schmid H, Rastaldi MP, Cowan P, Kretzler M, Parrilla R, Bendayan M, Gupta V, Nikolic B, Kalluri R, Carmeliet P, Mundel P, Reiser J (2008) Modification of kidney barrier function by the urokinase receptor. Nat Med 14:55–63

    CAS  PubMed  Google Scholar 

  35. 35.

    Trimarchi H, Coppo R (2019) Podocytopathy in the mesangial proliferative immunoglobulin a nephropathy: new insights into the mechanisms of damage and progression. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfy413

  36. 36.

    Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group (2009) KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD). Kidney Int Suppl (113):S1–130

  37. 37.

    Cambier A, Boyer O, Deschenes G, Gleeson J, Couderc A, Hogan J, Robert T (2019) Steroid therapy in children with IgA nephropathy. Pediatr Nephrol. https://doi.org/10.1007/s00467-018-4189-7

  38. 38.

    Cambier A, Rabant M, Peuchmaur M, Hertig A, Deschenes G, Couchoud C, Kolko A, Salomon R, Hogan J, Robert T (2018) Immunosuppressive treatment in children with IgA nephropathy and the clinical value of podocytopathic features. Kidney Int Rep 3:916–925

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Coppo R (2018) IgA nephropathy: a European perspective in the corticosteroid treatment. Kidney Dis (Basel) 4:58–64

    Google Scholar 

  40. 40.

    Berthoux F, Suzuki H, Thibaudin L, Yanagawa H, Maillard N, Mariat C, Tomino Y, Julian BA, Novak J (2012) Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol 23:1579–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Zhao N, Hou P, Lv J, Moldoveanu Z, Li Y, Kiryluk K, Gharavi AG, Novak J, Zhang H (2012) The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int 82:790–796

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Lafayette RA, Canetta PA, Rovin BH, Appel GB, Novak J, Nath KA, Sethi S, Tumlin JA, Mehta K, Hogan M, Erickson S, Julian BA, Leung N, Enders FT, Brown R, Knoppova B, Hall S, Fervenza FC (2017) A randomized, controlled trial of rituximab in IgA nephropathy with proteinuria and renal dysfunction. J Am Soc Nephrol 28:1306–1313

    CAS  PubMed  Google Scholar 

  43. 43.

    Mei HE, Frolich D, Giesecke C, Loddenkemper C, Reiter K, Schmidt S, Feist E, Daridon C, Tony HP, Radbruch A, Dorner T (2010) Steady-state generation of mucosal IgA+ plasmablasts is not abrogated by B-cell depletion therapy with rituximab. Blood 116:5181–5190

    CAS  PubMed  Google Scholar 

  44. 44.

    McCarthy DD, Kujawa J, Wilson C, Papandile A, Poreci U, Porfilio EA, Ward L, Lawson MA, Macpherson AJ, McCoy KD, Pei Y, Novak L, Lee JY, Julian BA, Novak J, Ranger A, Gommerman JL, Browning JL (2011) Mice overexpressing BAFF develop a commensal flora-dependent, IgA-associated nephropathy. J Clin Invest 121:3991–4002

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Zhong Z, Feng SZ, Xu RC, Li ZJ, Huang FX, Yin PR, Liu WT, Wang M, Shi DC, Zhou Q, Yu XQ, Li M (2017) Association of TNFSF13 polymorphisms with IgA nephropathy in a Chinese Han population. J Gene Med 19:6–7

    Google Scholar 

  46. 46.

    Zhai YL, Zhu L, Shi SF, Liu LJ, Lv JC, Zhang H (2016) Increased APRIL expression induces IgA1 aberrant glycosylation in IgA nephropathy. Medicine (Baltimore) 95:e3099

    CAS  Google Scholar 

  47. 47.

    Li W, Peng X, Liu Y, Liu H, Liu F, He L, Liu Y, Zhang F, Guo C, Chen G, Zhang L, Dong Z, Peng Y (2014) TLR9 and BAFF: their expression in patients with IgA nephropathy. Mol Med Rep 10:1469–1474

    CAS  PubMed  Google Scholar 

  48. 48.

    Luo R, Liu W, Wang J, Chen Y, Sun C, Zhou L, Li Y, Deng L (2014) Role of BAFF in pediatric patients with allergic rhinitis during sublingual immunotherapy. Eur J Pediatr 173:1033–1040

    CAS  PubMed  Google Scholar 

  49. 49.

    Xin G, Shi W, Xu LX, Su Y, Yan LJ, Li KS (2013) Serum BAFF is elevated in patients with IgA nephropathy and associated with clinical and histopathological features. J Nephrol 26:683–690

    CAS  PubMed  Google Scholar 

  50. 50.

    Myette JR, Kano T, Suzuki H, Sloan SE, Szretter KJ, Ramakrishnan B, Adari H, Deotale KD, Engler F, Shriver Z, Wollacott AM, Suzuki Y, Pereira BJG (2019) A proliferation inducing ligand (APRIL) targeted antibody is a safe and effective treatment of murine IgA nephropathy. Kidney Int 96:104–116

    CAS  PubMed  Google Scholar 

  51. 51.

    Gao W, Xiong Y, Li Q, Yang H (2017) Inhibition of Toll-like receptor signaling as a promising therapy for inflammatory diseases: a journey from molecular to nano therapeutics. Front Physiol 8:508

    PubMed  PubMed Central  Google Scholar 

  52. 52.

    Yang YZ, Liu LJ, Shi SF, Wang JW, Chen YQ, Lv JC, Zhang H (2018) Effects of hydroxychloroquine on proteinuria in immunoglobulin a nephropathy. Am J Nephrol 47:145–152

    CAS  PubMed  Google Scholar 

  53. 53.

    Liu LJ, Yang YZ, Shi SF, Bao YF, Yang C, Zhu SN, Sui GL, Chen YQ, Lv JC, Zhang H (2019) Effects of hydroxychloroquine on proteinuria in IgA nephropathy: a randomized controlled trial. Am J Kidney Dis 74:15–22

    CAS  PubMed  Google Scholar 

  54. 54.

    Yusuf IH, Sharma S, Luqmani R, Downes SM (2017) Hydroxychloroquine retinopathy. Eye (Lond) 31:828–845

    CAS  Google Scholar 

  55. 55.

    Coppo R, Camilla R, Alfarano A, Balegno S, Mancuso D, Peruzzi L, Amore A, Dal Canton A, Sepe V, Tovo P (2009) Upregulation of the immunoproteasome in peripheral blood mononuclear cells of patients with IgA nephropathy. Kidney Int 75:536–541

    CAS  PubMed  Google Scholar 

  56. 56.

    Hartono C, Chung M, Perlman AS, Chevalier JM, Serur D, Seshan SV, Muthukumar T (2018) Bortezomib for reduction of proteinuria in IgA nephropathy. Kidney Int Rep 3:861–866

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Kim MJ, McDaid JP, McAdoo SP, Barratt J, Molyneux K, Masuda ES, Pusey CD, Tam FW (2012) Spleen tyrosine kinase is important in the production of proinflammatory cytokines and cell proliferation in human mesangial cells following stimulation with IgA1 isolated from IgA nephropathy patients. J Immunol 189:3751–3758

    CAS  PubMed  Google Scholar 

  58. 58.

    McAdoo SP, Bhangal G, Page T, Cook HT, Pusey CD, Tam FW (2015) Correlation of disease activity in proliferative glomerulonephritis with glomerular spleen tyrosine kinase expression. Kidney Int 88:52–60

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Maillard N, Wyatt RJ, Julian BA, Kiryluk K, Gharavi A, Fremeaux-Bacchi V, Novak J (2015) Current understanding of the role of complement in IgA nephropathy. J Am Soc Nephrol 26:1503–1512

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Roos A, Rastaldi MP, Calvaresi N, Oortwijn BD, Schlagwein N, van Gijlswijk-Janssen DJ, Stahl GL, Matsushita M, Fujita T, van Kooten C, Daha MR (2006) Glomerular activation of the lectin pathway of complement in IgA nephropathy is associated with more severe renal disease. J Am Soc Nephrol 17:1724–1734

    CAS  PubMed  Google Scholar 

  61. 61.

    Roos A, Bouwman LH, van Gijlswijk-Janssen DJ, Faber-Krol MC, Stahl GL, Daha MR (2001) Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 167:2861–2868

    CAS  PubMed  Google Scholar 

  62. 62.

    Espinosa M, Ortega R, Sanchez M, Segarra A, Salcedo MT, Gonzalez F, Camacho R, Valdivia MA, Cabrera R, Lopez K, Pinedo F, Gutierrez E, Valera A, Leon M, Cobo MA, Rodriguez R, Ballarin J, Arce Y, Garcia B, Munoz MD, Praga M, Spanish Group for Study of Glomerular Diseases (GLOSEN) (2014) Association of C4d deposition with clinical outcomes in IgA nephropathy. Clin J Am Soc Nephrol 9:897–904

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Rauterberg EW, Lieberknecht HM, Wingen AM, Ritz E (1987) Complement membrane attack (MAC) in idiopathic IgA-glomerulonephritis. Kidney Int 3:820–829

    Google Scholar 

  64. 64.

    Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, Xie J, Sanna-Cherchi S, Men CJ, Julian BA, Wyatt RJ, Novak J, He JC, Wang H, Lv J, Zhu L, Wang W, Wang Z, Yasuno K, Gunel M, Mane S, Umlauf S, Tikhonova I, Beerman I, Savoldi S, Magistroni R, Ghiggeri GM, Bodria M, Lugani F, Ravani P, Ponticelli C, Allegri L, Boscutti G, Frasca G, Amore A, Peruzzi L, Coppo R, Izzi C, Viola BF, Prati E, Salvadori M, Mignani R, Gesualdo L, Bertinetto F, Mesiano P, Amoroso A, Scolari F, Chen N, Zhang H, Lifton RP (2011) Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet 43:321–327

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Zhu L, Zhai YL, Wang FM, Hou P, Lv JC, Xu DM, Shi SF, Liu LJ, Yu F, Zhao MH, Novak J, Gharavi AG, Zhang H (2015) Variants in complement factor H and complement factor H-related protein genes, CFHR3 and CFHR1, affect complement activation in IgA nephropathy. J Am Soc Nephrol 26:1195–1204

    CAS  PubMed  Google Scholar 

  66. 66.

    van den Dobbelsteen ME, Verhasselt V, Kaashoek JG, Timmerman JJ, Schroeijers WE, Verweij CL, van der Woude FJ, van Es LA, Daha MR (1994) Regulation of C3 and factor H synthesis of human glomerular mesangial cells by IL-1 and interferon-gamma. Clin Exp Immunol 95:173–180

    PubMed  PubMed Central  Google Scholar 

  67. 67.

    Schmitt R, Stahl AL, Olin AI, Kristoffersson AC, Rebetz J, Novak J, Lindahl G, Karpman D (2014) The combined role of galactose-deficient IgA1 and streptococcal IgA-binding M protein in inducing IL-6 and C3 secretion from human mesangial cells: implications for IgA nephropathy. J Immunol 193:317–326

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Ring T, Pedersen BB, Salkus G, Goodship TH (2015) Use of eculizumab in crescentic IgA nephropathy: proof of principle and conundrum? Clin Kidney J 8:489–491

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Rosenblad T, Rebetz J, Johansson M, Bekassy Z, Sartz L, Karpman D (2014) Eculizumab treatment for rescue of renal function in IgA nephropathy. Pediatr Nephrol 29:2225–2228

    PubMed  Google Scholar 

  70. 70.

    Liu L, Zhang Y, Duan X, Peng Q, Liu Q, Zhou Y, Quan S, Xing G (2014) C3a, C5a renal expression and their receptors are correlated to severity of IgA nephropathy. J Clin Immunol 34:224–232

    CAS  PubMed  Google Scholar 

  71. 71.

    Selvaskandan H, Cheung CK, Muto M, Barratt J (2019) New strategies and perspectives on managing IgA nephropathy. Clin Exp Nephrol 23:577–588

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    McNamara LA, Topaz N, Wang X, Hariri S, Fox L, MacNeil JR (2017) High risk for invasive meningococcal disease among patients receiving eculizumab (Soliris) despite receipt of meningococcal vaccine. MMWR Morb Mortal Wkly Rep 66:734–737

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Floege J, Feehally J (2016) The mucosa–kidney axis in IgA nephropathy. Nat Rev Nephrol 12:147–156

    CAS  PubMed  Google Scholar 

  74. 74.

    Kiryluk K, Li Y, Scolari F, Sanna-Cherchi S, Choi M, Verbitsky M, Fasel D, Lata S, Prakash S, Shapiro S, Fischman C, Snyder HJ, Appel G, Izzi C, Viola BF, Dallera N, Del Vecchio L, Barlassina C, Salvi E, Bertinetto FE, Amoroso A, Savoldi S, Rocchietti M, Amore A, Peruzzi L, Coppo R, Salvadori M, Ravani P, Magistroni R, Ghiggeri GM, Caridi G, Bodria M, Lugani F, Allegri L, Delsante M, Maiorana M, Magnano A, Frasca G, Boer E, Boscutti G, Ponticelli C, Mignani R, Marcantoni C, Di Landro D, Santoro D, Pani A, Polci R, Feriozzi S, Chicca S, Galliani M, Gigante M, Gesualdo L, Zamboli P, Battaglia GG, Garozzo M, Maixnerova D, Tesar V, Eitner F, Rauen T, Floege J, Kovacs T, Nagy J, Mucha K, Paczek L, Zaniew M, Mizerska-Wasiak M, Roszkowska-Blaim M, Pawlaczyk K, Gale D, Barratt J, Thibaudin L, Berthoux F, Canaud G, Boland A, Metzger M, Panzer U, Suzuki H, Goto S, Narita I, Caliskan Y, Xie J, Hou P, Chen N, Zhang H, Wyatt RJ, Novak J, Julian BA, Feehally J, Stengel B, Cusi D, Lifton RP, Gharavi AG (2014) Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat Genet 46:1187–1196

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Sato M, Kojima H, Takayama K, Koshikawa S (1988) Glomerular deposition of food antigens in IgA nephropathy. Clin Exp Immunol 73:295–299

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Smerud HK, Fellstrom B, Hallgren R, Osagie S, Venge P, Kristjansson G (2009) Gluten sensitivity in patients with IgA nephropathy. Nephrol Dial Transplant 24:2476–2481

    CAS  PubMed  Google Scholar 

  77. 77.

    Collin P, Syrjanen J, Partanen J, Pasternack A, Kaukinen K, Mustonen J (2002) Celiac disease and HLA DQ in patients with IgA nephropathy. Am J Gastroenterol 97:2572–2576

    PubMed  Google Scholar 

  78. 78.

    Papista C, Lechner S, Ben Mkaddem S, LeStang MB, Abbad L, Bex-Coudrat J, Pillebout E, Chemouny JM, Jablonski M, Flamant M, Daugas E, Vrtovsnik F, Yiangou M, Berthelot L, Monteiro RC (2015) Gluten exacerbates IgA nephropathy in humanized mice through gliadin–CD89 interaction. Kidney Int 88:276–285

    CAS  PubMed  Google Scholar 

  79. 79.

    Coppo R, Amore A, Roccatello D (1992) Dietary antigens and primary immunoglobulin a nephropathy. J Am Soc Nephrol 2:S173–S180

    CAS  PubMed  Google Scholar 

  80. 80.

    Fellstrom BC, Barratt J, Cook H, Coppo R, Feehally J, de Fijter JW, Floege J, Hetzel G, Jardine AG, Locatelli F, Maes BD, Mercer A, Ortiz F, Praga M, Sorensen SS, Tesar V, Del Vecchio L, NEFIGAN Trial Investigators (2017) Targeted-release budesonide versus placebo in patients with IgA nephropathy (NEFIGAN): a double-blind, randomised, placebo-controlled phase 2b trial. Lancet 389:2117–2127

    PubMed  Google Scholar 

  81. 81.

    Venettacci O, Larkins N, Willis F (2018) Childhood IgA nephropathy successfully treated with targeted-release budesonide: a case report. J Paediatr Child Health 54:1403

    PubMed  Google Scholar 

  82. 82.

    Rauen T, Eitner F, Fitzner C, Sommerer C, Zeier M, Otte B, Panzer U, Peters H, Benck U, Mertens PR, Kuhlmann U, Witzke O, Gross O, Vielhauer V, Mann JF, Hilgers RD, Floege J, STOP-IgAN Investigators (2015) Intensive supportive care plus immunosuppression in IgA nephropathy. N Engl J Med 373:2225–2236

    CAS  PubMed  Google Scholar 

  83. 83.

    Lv J, Zhang H, Wong MG, Jardine MJ, Hladunewich M, Jha V, Monaghan H, Zhao M, Barbour S, Reich H, Cattran D, Glassock R, Levin A, Wheeler D, Woodward M, Billot L, Chan TM, Liu ZH, Johnson DW, Cass A, Feehally J, Floege J, Remuzzi G, Wu Y, Agarwal R, Wang HY, Perkovic V, TESTING Study Group (2017) Effect of oral methylprednisolone on clinical outcomes in patients with IgA nephropathy: the TESTING randomized clinical trial. JAMA 318:432–442

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Ramezani A, Raj DS (2014) The gut microbiome, kidney disease, and targeted interventions. J Am Soc Nephrol 25:657–670

    CAS  PubMed  Google Scholar 

  85. 85.

    Hollon J, Puppa EL, Greenwald B, Goldberg E, Guerrerio A, Fasano A (2015) Effect of gliadin on permeability of intestinal biopsy explants from celiac disease patients and patients with non-celiac gluten sensitivity. Nutrients 7:1565–1576

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Qin W, Zhong X, Fan JM, Zhang YJ, Liu XR, Ma XY (2008) External suppression causes the low expression of the Cosmc gene in IgA nephropathy. Nephrol Dial Transplant 23:1608–1614

    CAS  PubMed  Google Scholar 

  87. 87.

    De Angelis M, Montemurno E, Piccolo M, Vannini L, Lauriero G, Maranzano V, Gozzi G, Serrazanetti D, Dalfino G, Gobbetti M, Gesualdo L (2014) Microbiota and metabolome associated with immunoglobulin a nephropathy (IgAN). PLoS One 9:e99006

    PubMed  PubMed Central  Google Scholar 

  88. 88.

    Chemouny JM, Gleeson PJ, Abbad L, Lauriero G, Boedec E, Le Roux K, Monot C, Bredel M, Bex-Coudrat J, Sannier A, Daugas E, Vrtovsnik F, Gesualdo L, Leclerc M, Berthelot L, Ben Mkaddem S, Lepage P, Monteiro RC (2019) Modulation of the microbiota by oral antibiotics treats immunoglobulin a nephropathy in humanized mice. Nephrol Dial Transplant 34:1135–1144

    CAS  PubMed  Google Scholar 

  89. 89.

    Juul FE, Garborg K, Bretthauer M, Skudal H, Oines MN, Wiig H, Rose O, Seip B, Lamont JT, Midtvedt T, Valeur J, Kalager M, Holme O, Helsingen L, Loberg M, Adami HO (2018) Fecal microbiota transplantation for primary Clostridium difficile infection. N Engl J Med 378:2535–2536

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Renato C. Monteiro.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cambier, A., Gleeson, P.J., Flament, H. et al. New therapeutic perspectives for IgA nephropathy in children. Pediatr Nephrol 36, 497–506 (2021). https://doi.org/10.1007/s00467-020-04475-w

Download citation

Keywords

  • IgA
  • IgA nephropathy
  • Treatment
  • Gluten
  • Microbiota
  • Antibiotics
  • Children