Pediatric Nephrology

, Volume 33, Issue 9, pp 1513–1521 | Cite as

Early cardiovascular manifestations in children and adolescents with autosomal dominant polycystic kidney disease: a single center study

  • Vasiliki Karava
  • Cherine Benzouid
  • Julien Hogan
  • Claire Dossier
  • André Pierre Denjean
  • Georges Deschênes
Original Article



This study aims to describe the cardiovascular manifestations in children with autosomal dominant polycystic kidney disease (ADPKD) and detect their relation with kidney disease and type of gene mutation.


Twenty-one patients (7 to 19 years old) were included. Cardiovascular evaluation involved blood pressure (BP), indexed left ventricular mass (LVMI), pulse wave velocity (PWV), and carotid intima media thickness (cIMT) measurement. Patients were classified according to percentile reference values of these parameters in healthy children. The 95th percentile was the highest level of normal values. Glomerular filtration rate (GFR) and microalbuminuria were also measured.


Antihypertensive treatment, large LVMI, high PWV, and increased cIMT were observed in 6 (28.6%), 2 (9.5%), 4 (19%), and 8 (38.1%) patients respectively. Antihypertensive treatment was not associated with either high PWV or increased cIMT. Linear correlation was noticed between LVMI and PWV (r2 = 0.243, p = 0.023) and also between LVMI and cIMT (r2 = 0.203, p = 0.041). The median age of patients with high PWV, increased cIMT, and large LVMI was 9.5, 13, and 18 years old. GFR was normal in all patients. Patients with increased cIMT presented higher levels of urine microalbumin to creatinine ratio (p = 0.025). Genetic mutation was available in 18 patients. Antihypertensive treatment was more frequent in patients without PKD1 missense mutation (p = 0.044).


High PWV and increased cIMT indicating arterial stiffness and hypertrophic vasculopathy may be present in children with ADPKD regardless BP status, and prior to GFR decline, suggesting that vascular disease precedes chronic kidney disease in ADPKD.


ADPKD Arterial stiffness Cardiovascular Gene mutation Pediatrics Renal function 


Funding information

Vasiliki Karava received a fund from The Belgian Kids’ Fund for the conduction of this study.

Compliance with ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed brochure was sent to all individual participants included in this study. Informed consent for the conduction of genetic testing was obtained from all individual participants included in the study.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Reddy BV, Chapman AB (2017) The spectrum of autosomal dominant polycystic kidney disease in children and adolescents. Pediatr Nephrol 32:31–42CrossRefPubMedGoogle Scholar
  2. 2.
    Torres VE, Harris PC, Pirson Y (2007) Autosomal dominant polycystic kidney disease. Lancet (London, England) 369:1287–1301CrossRefGoogle Scholar
  3. 3.
    Porath B, Gainullin VG, Cornec-Le Gall E, Dillinger EK, Heyer CM, Hopp K, Edwards ME, Madsen CD, Mauritz SR, Banks CJ, Baheti S, Reddy B, Herrero JI, Bañales JM, Hogan MC, Tasic V, Watnick TJ, Chapman AB, Vigneau C, Lavainne F, Audrézet MP, Ferec C, Le Meur Y, Torres VE, Genkyst Study Group, HALT Progression of Polycystic Kidney Disease Group; Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease, Harris PC (2016) Mutations in GANAB, encoding the glucosidase IIα subunit, cause autosomal-dominant polycystic kidney and liver disease. Am J Hum Genet 98:1193–1207CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Chapman AB, Stepniakowski K, Rahbari-Oskoui F (2010) Hypertension in autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis 17:153–163CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ecder T, Schrier RW (2009) Cardiovascular abnormalities in autosomal-dominant polycystic kidney disease. Nat Rev Nephrol 5:221–228CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Griffin MD, Torres VE, Grande JP, Kumar R (1997) Vascular expression of polycystin. J Am Soc Nephrol 8:616–626PubMedGoogle Scholar
  7. 7.
    Rahman E, Niaz FA, Al-Suwaida A (2009) Analysis of causes of mortality in patients with autosomal dominant polycystic kidney disease: a single center study. Saudi J Kidney Dis Transpl 20:806–810PubMedGoogle Scholar
  8. 8.
    Helal I, Reed B, Mettler P, Mc Fann K, Tkachenko O, Yan XD, Schrier RW (2012) Prevalence of cardiovascular events in patients with autosomal dominant polycystic kidney disease. Am J Nephrol 36:362–370CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cagnazzo F, Gambacciani C, Morganti R, Perrini P (2017) Intracranial aneurysms in patients with autosomal dominant polycystic kidney disease: prevalence, risk of rupture, and management. A systematic review. Acta Neurochir 159:811–821CrossRefPubMedGoogle Scholar
  10. 10.
    Cadnapaphornchai MA (2015) Autosomal dominant polycystic kidney disease in children. Curr Opin Pediatr 27:193–200CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cadnapaphornchai MA, McFann K, Strain JD, Masoumi A, Schrier RW (2008) Increased left ventricular mass in children with autosomal dominant polycystic kidney disease and borderline hypertension. Kidney Int 74:1192–1196CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ivy DD, Shaffer EM, Johnson AM, Kimberling WJ, Dobin A, Gabow PA (1995) Cardiovascular abnormalities in children with autosomal dominant polycystic kidney disease. J Am Soc Nephrol 5:2032–2036PubMedGoogle Scholar
  13. 13.
    Thong KM, Ong ACM (2014) Sudden death due to subarachnoid haemorrhage in an infant with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 29(Suppl 4):121–123CrossRefGoogle Scholar
  14. 14.
    Kubo S, Nakajima M, Fukuda K, Nobayashi M, Sakaki T, Aoki K, Hirao Y, Yoshioka A (2004) A 4-year-old girl with autosomal dominant polycystic kidney disease complicated by a ruptured intracranial aneurysm. Eur J Pediatr 163:675–677PubMedGoogle Scholar
  15. 15.
    Wang M-C, Tsai W-C, Chen J-Y, Cheng MF, Huang JJ (2007) Arterial stiffness correlated with cardiac remodelling in patients with chronic kidney disease. Nephrology 12:591–597CrossRefPubMedGoogle Scholar
  16. 16.
    Chung CM, Lin YS, Chu CM, Chang ST, Cheng HW, Yang TY, Hsiao JF, Pan KL, Hsu JT (2012) Arterial stiffness is the independent factor of left ventricular hypertrophy determined by electrocardiogram. Am J Med Sci 344:190–193CrossRefPubMedGoogle Scholar
  17. 17.
    Ikonomidis I, Lekakis J, Papadopoulos C, Triantafyllidi H, Paraskevaidis I, Georgoula G, Tzortzis S, Revela I, Kremastinos DT (2008) Incremental value of pulse wave velocity in the determination of coronary microcirculatory dysfunction in never-treated patients with essential hypertension. Am J Hypertens 21:806–813CrossRefPubMedGoogle Scholar
  18. 18.
    Vlachopoulos C, Aznaouridis K, Stefanadis C (2010) Prediction of cardiovascular events and all-cause mortality with arterial stiffness. J Am Coll Cardiol 55:1318–1327CrossRefPubMedGoogle Scholar
  19. 19.
    Tarumi T, Shah F, Tanaka H, Haley AP (2011) Association between central elastic artery stiffness and cerebral perfusion in deep subcortical gray and white matter. Am J Hypertens 24:1108–1113CrossRefPubMedGoogle Scholar
  20. 20.
    Bonithon-Kopp C, Touboul PJ, Berr C, Leroux C, Mainard F, Courbon D, Ducimetière P (1996) Relation of intima-media thickness to atherosclerotic plaques in carotid arteries. The Vascular Aging (EVA) Study. Arterioscler Thromb Vasc Biol 16:310–316CrossRefPubMedGoogle Scholar
  21. 21.
    Nezu T, Hosomi N, Aoki S, Matsumoto M (2016) Carotid intima-media thickness for atherosclerosis. J Atheroscler Thromb 23:18–31CrossRefPubMedGoogle Scholar
  22. 22.
    Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M (2007) Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation 115:459–467CrossRefPubMedGoogle Scholar
  23. 23.
    Rong S, Jin X, Ye C, Chen J, Mei C (2009) Carotid vascular remodelling in patients with autosomal dominant polycystic kidney disease. Nephrology 14:113–117CrossRefPubMedGoogle Scholar
  24. 24.
    Turkmen K, Oflaz H, Uslu B, Cimen AO, Elitok A, Kasikcioglu E, Alisir S, Tufan F, Namli S, Uysal M, Ecder T (2008) Coronary flow velocity reserve and carotid intima media thickness in patients with autosomal dominant polycystic kidney disease: from impaired tubules to impaired carotid and coronary arteries. Clin J Am Soc Nephrol 3:986–991CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kocaman O, Oflaz H, Yekeler E, Dursun M, Erdogan D, Demirel S, Alisir S, Turgut F, Mercanoglu F, Ecder T (2004) Endothelial dysfunction and increased carotid intima-media thickness in patients with autosomal dominant polycystic kidney disease. Am J Kidney Dis 43:854–860CrossRefPubMedGoogle Scholar
  26. 26.
    Nowak KL, Farmer H, Cadnapaphornchai MA, Gitomer B, Chonchol M (2017) Vascular dysfunction in children and young adults with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant 32:342–347CrossRefPubMedGoogle Scholar
  27. 27.
    Shroff R, Dégi A, Kerti A, Kis E, Cseprekál O, Tory K, Szabó AJ, Reusz GS (2013) Cardiovascular risk assessment in children with chronic kidney disease. Pediatr Nephrol 28:875–884CrossRefPubMedGoogle Scholar
  28. 28.
    Lowenthal A, Evans JMA, Punn R, Nourse SE, Vu CN, Popat RA, Selamet Tierney ES (2014) Arterial applanation tonometry: feasibility and reproducibility in children and adolescents. Am J Hypertens 27:1218–1224CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Narayan O, Casan J, Szarski M, Dart AM, Meredith IT, Cameron JD (2014) Estimation of central aortic blood pressure: a systematic meta-analysis of available techniques. J Hypertens 32:1727–1740CrossRefPubMedGoogle Scholar
  30. 30.
    McEniery CM, Cockcroft JR, Roman MJ, Franklin SS, Wilkinson IB (2014) Central blood pressure: current evidence and clinical importance. Eur Heart J 35:1719–1725CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Doyon A, Kracht D, Bayazit AK, Deveci M, Duzova A, Krmar RT, Litwin M, Niemirska A, Oguz B, Schmidt BM, Sözeri B, Querfeld U, Melk A, Schaefer F, Wühl E, 4C Study Consortium (2013) Carotid artery intima-media thickness and distensibility in children and adolescents: reference values and role of body dimensions. Hypertension 62:550–556CrossRefPubMedGoogle Scholar
  32. 32.
    Reusz GS, Cseprekal O, Temmar M, Kis E, Cherif AB, Thaleb A, Fekete A, Szabó AJ, Benetos A, Salvi P (2010) Reference values of pulse wave velocity in healthy children and teenagers. Hypertension 56:217–224CrossRefPubMedGoogle Scholar
  33. 33.
    Khoury PR, Mitsnefes M, Daniels SR, Kimball TR (2009) Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr 22:709–714CrossRefPubMedGoogle Scholar
  34. 34.
    Flynn JT, Daniels SR, Hayman LL, Maahs DM, BW MC, Mitsnefes M, Zachariah JP, Urbina EM, American Heart Association Atherosclerosis, Hypertension and Obesity in Youth Committee of the Council on Cardiovascular Disease in the Young (2014) Update: ambulatory blood pressure monitoring in children and adolescents: a scientific statement from the American Heart Association. Hypertenssion 63:1116–1135CrossRefGoogle Scholar
  35. 35.
    Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, Furth SL (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    What kinds of gene mutations are possible? - Genetics Home Reference. Accessed 21 Feb 2018
  37. 37.
    Huang CM, Wang KL, Cheng HM, Chuang SY, Sung SH, Yu WC, Ting CT, Lakatta EG, Yin FC, Chou P, Chen CH (2011) Central versus ambulatory blood pressure in the prediction of all-cause and cardiovascular mortalities. J Hypertens 29:454–459CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rouxinol-Dias A, Araújo S, Silva JA, Barbosa L, Polónia J (2017) Association between ambulatory blood pressure values and central aortic pressure in a large population of normotensive and hypertensive patients. Blood Press Monit 23:24–32Google Scholar
  39. 39.
    Rahman M, Hsu JY, Desai N, Hsu CY, Anderson AH, Appel LJ, Chen J, Cohen DL, Drawz PE, He J, Qiang P, Ricardo AC, Steigerwalt S, Weir MR, Wright JT Jr, Zhang X, Townsend RR, Study Investigators CRIC (2018) Central blood pressure and cardiovascular outcomes in chronic kidney disease. Clin J Am Soc Nephrol.
  40. 40.
    Michel J-B (2004) Système rénine-angiotensine et remodelage vasculaire. Médecine/sciences 20:409–413CrossRefGoogle Scholar
  41. 41.
    Touyz RM (2005) Intracellular mechanisms involved in vascular remodelling of resistance arteries in hypertension: role of angiotensin II. Exp Physiol 90:449–455CrossRefPubMedGoogle Scholar
  42. 42.
    Ashor AW, Lara J, Siervo M, Celis-Morales C, Mathers JC (2014) Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials. PLoS One 9:e110034CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    D’Elia L, Galletti F, La Fata E, Sabino P, Strazzullo P (2017) Effect of dietary sodium restriction on arterial stiffness. J Hypertens 36:734–743CrossRefGoogle Scholar
  44. 44.
    Petersen KS, Clifton PM, Keogh JB (2014) The association between carotid intima media thickness and individual dietary components and patterns. Nutr Metab Cardiovasc Dis 24:495–502CrossRefPubMedGoogle Scholar
  45. 45.
    Meyer AA, Kundt G, Lenschow U, Schuff-Werner P, Kienast W (2006) Improvement of early vascular changes and cardiovascular risk factors in obese children after a six-month exercise program. J Am Coll Cardiol 48:1865–1870CrossRefPubMedGoogle Scholar
  46. 46.
    Cadnapaphornchai MA, McFann K, Strain JD, Masoumi A, Schrier RW (2009) Prospective change in renal volume and function in children with ADPKD. Clin J Am Soc Nephrol 4:820–829CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Cornec-Le Gall E, Audrezet M-P, Rousseau A, Hourmant M, Renaudineau E, Charasse C, Morin MP, Moal MC, Dantal J, Wehbe B, Perrichot R, Frouget T, Vigneau C, Potier J, Jousset P, Guillodo MP, Siohan P, Terki N, Sawadogo T, Legrand D, Menoyo-Calonge V, Benarbia S, Besnier D, Longuet H, Férec C, Le Meur Y (2016) The PROPKD score: a new algorithm to predict renal survival in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 27:942–951CrossRefPubMedGoogle Scholar
  48. 48.
    Woon C, Bielinski-Bradbury A, O’Reilly K, Robinson P (2015) A systematic review of the predictors of disease progression in patients with autosomal dominant polycystic kidney disease. BMC Nephrol 16:140CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Azurmendi PJ, Fraga AR, Galan FM, Kotliar C, Arrizurieta EE, Valdez MG, Forcada PJ, Stefan JS, Martin RS (2009) Early renal and vascular changes in ADPKD patients with low-grade albumin excretion and normal renal function. Nephrol Dial Transplant 24:2458–2463CrossRefPubMedGoogle Scholar
  50. 50.
    Cornec-Le Gall E, Audrézet MP, Chen JM, Hourmant M, Morin MP, Perrichot R, Charasse C, Whebe B, Renaudineau E, Jousset P, Guillodo MP, Grall-Jezequel A, Saliou P, Férec C, Le Meur Y (2013) Type of PKD1 mutation influences renal outcome in ADPKD. J Am Soc Nephrol 24:1006–1013CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© IPNA 2018

Authors and Affiliations

  • Vasiliki Karava
    • 1
  • Cherine Benzouid
    • 2
  • Julien Hogan
    • 1
  • Claire Dossier
    • 1
  • André Pierre Denjean
    • 2
  • Georges Deschênes
    • 1
  1. 1.Pediatric Nephrology Department, Robert Debré HospitalAPHPParisFrance
  2. 2.Pediatric Cardiology Department, Robert Debré HospitalAPHPParisFrance

Personalised recommendations