Pediatric Nephrology

, Volume 28, Issue 10, pp 1923–1942 | Cite as

Hereditary causes of kidney stones and chronic kidney disease

  • Vidar O. Edvardsson
  • David S. Goldfarb
  • John C. Lieske
  • Lada Beara-Lasic
  • Franca Anglani
  • Dawn S. Milliner
  • Runolfur Palsson


Adenine phosphoribosyltransferase (APRT) deficiency, cystinuria, Dent disease, familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), and primary hyperoxaluria (PH) are rare but important causes of severe kidney stone disease and/or chronic kidney disease in children. Recurrent kidney stone disease and nephrocalcinosis, particularly in pre-pubertal children, should alert the physician to the possibility of an inborn error of metabolism as the underlying cause. Unfortunately, the lack of recognition and knowledge of the five disorders has frequently resulted in an unacceptable delay in diagnosis and treatment, sometimes with grave consequences. A high index of suspicion coupled with early diagnosis may reduce or even prevent the serious long-term complications of these diseases. In this paper, we review the epidemiology, clinical features, diagnosis, treatment, and outcome of patients with APRT deficiency, cystinuria, Dent disease, FHHNC, and PH, with an emphasis on childhood manifestations.


Nephrolithiasis Nephrocalcinosis Kidney failure Crystalline nephropathy Hereditary disorders Adenine phosphoribosyltransferase deficiency 2,8-dihydroxyadeninuria Cystinuria Dent disease Familial hypomagnesemia with hypercalciuria and nephrocalcinosis Primary hyperoxaluria 



The authors gratefully acknowledge the support of the Rare Kidney Stone Consortium (U54KD083908), a part of the National Institutes of Health (NIH) Rare Diseases Clinical Research Network (RDCRN), funded by the NIDDK, and the NIH Office of Rare Diseases Research (ORDR) and the Mayo Clinic O’Brien Urology Research Center (P50 DK083007) funded by the NIDDK. We thank Rachel Miller of the Mayo Clinic Renal Function Laboratory for photomicrographs of cystine, calcium oxalate, and calcium phosphate crystals, and Hrafnhildur L. Runolfsdottir, a medical student at the University of Iceland, Reykjavik, Iceland, for generating the images of urinary DHA crystals. The authors also thank members of the Rare Kidney Stone Consortium for critical feedback during construction of the diagnostic algorithms (Figs. 3, 4, 5, 6 and 7).

Conflict of interest statement

Dr. Goldfarb is a consultant for Takeda.


  1. 1.
    Sas DJ (2011) An update on the changing epidemiology and metabolic risk factors in pediatric kidney stone disease. Clin J Am Soc Nephrol 6:2062–2068PubMedCrossRefGoogle Scholar
  2. 2.
    Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC (2003) Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 63:1817–1823PubMedCrossRefGoogle Scholar
  3. 3.
    Beara-Lasic L, Edvardsson V, Palsson R, Lieske J, Goldfarb D, Milliner D (2011) Genetic causes of kidney stones and kidney failure. Clin Rev Bone Miner Metab 10(6):1–18Google Scholar
  4. 4.
    Greenwood MC, Dillon MJ, Simmonds HA, Barratt TM, Pincott JR, Metreweli C (1982) Renal failure due to 2,8-dihydroxyadenine urolithiasis. Eur J Pediatr 138:346–349PubMedCrossRefGoogle Scholar
  5. 5.
    Konrad M, Hou J, Weber S, Dotsch J, Kari JA, Seeman T, Kuwertz-Broking E, Peco-Antic A, Tasic V, Dittrich K, Alshaya HO, von Vigier RO, Gallati S, Goodenough DA, Schaller A (2008) CLDN16 genotype predicts renal decline in familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 19:171–181PubMedCrossRefGoogle Scholar
  6. 6.
    Hoppe B, Beck BB, Milliner DS (2009) The primary hyperoxalurias. Kidney Int 75:1264–1271PubMedCrossRefGoogle Scholar
  7. 7.
    Rule AD, Krambeck AE, Lieske JC (2011) Chronic kidney disease in kidney stone formers. Clin J Am Soc Nephrol 6:2069–2075PubMedCrossRefGoogle Scholar
  8. 8.
    Edvardsson V, Palsson R, Olafsson I, Hjaltadottir G, Laxdal T (2001) Clinical features and genotype of adenine phosphoribosyltransferase deficiency in Iceland. Am J Kidney Dis 38:473–480PubMedCrossRefGoogle Scholar
  9. 9.
    Bollee G, Dollinger C, Boutaud L, Guillemot D, Bensman A, Harambat J, Deteix P, Daudon M, Knebelmann B, Ceballos-Picot I (2010) Phenotype and genotype characterization of adenine phosphoribosyltransferase deficiency. J Am Soc Nephrol 21:679–688PubMedCrossRefGoogle Scholar
  10. 10.
    Kelley WN, Levy RI, Rosenbloom FM, Henderson JF, Seegmiller JE (1968) Adenine phosphoribosyltransferase deficiency: a previously undescribed genetic defect in man. J Clin Invest 47:2281–2289PubMedCrossRefGoogle Scholar
  11. 11.
    Sahota AS, Tischfield AJ, Kamatani N, Simmonds HA (2001) Adenine phosphoribosyltransferase deficiency and 2,8-dihydroxyadenine lithiasis. In: Scriver CRBA, Sly WS, Valle D, Vogelstein B, Childs B (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 2571–2584Google Scholar
  12. 12.
    Broderick TP, Schaff DA, Bertino AM, Dush MK, Tischfield JA, Stambrook PJ (1987) Comparative anatomy of the human APRT gene and enzyme: nucleotide sequence divergence and conservation of a nonrandom CpG dinucleotide arrangement. Proc Natl Acad Sci U S A 84:3349–3353PubMedCrossRefGoogle Scholar
  13. 13.
    Edvardsson VO, Palsson R, Sahota A (2012) Adenine Phosphoribosyltransferase Deficiency In: GeneReviews at GeneTests: Medical Genetics Information Resource [database online]. Copyright, University of Washington, Seattle, 1997–2010. Available at
  14. 14.
    Kamatani N, Hakoda M, Otsuka S, Yoshikawa H, Kashiwazaki S (1992) Only three mutations account for almost all defective alleles causing adenine phosphoribosyltransferase deficiency in Japanese patients. J Clin Invest 90:130–135PubMedCrossRefGoogle Scholar
  15. 15.
    Nasr SH, Sethi S, Cornell LD, Milliner DS, Boelkins M, Broviac J, Fidler ME (2010) Crystalline nephropathy due to 2,8-dihydroxyadeninuria: an under-recognized cause of irreversible renal failure. Nephrol Dial Transplant 25:1909–1915PubMedCrossRefGoogle Scholar
  16. 16.
    Hidaka Y, Tarle SA, O’Toole TE, Kelley WN, Palella TD (1987) Nucleotide sequence of the human APRT gene. Nucleic Acids Res 15:9086PubMedCrossRefGoogle Scholar
  17. 17.
    Sahota A, Chen J, Boyadjiev SA, Gault MH, Tischfield JA (1994) Missense mutation in the adenine phosphoribosyltransferase gene causing 2,8-dihydroxyadenine urolithiasis. Hum Mol Genet 3:817–818PubMedCrossRefGoogle Scholar
  18. 18.
    Harambat J, Bollee G, Daudon M, Ceballos-Picot I, Bensman A (2012) Adenine phosphoribosyltransferase deficiency in children. Pediatr Nephrol 27:571–579PubMedCrossRefGoogle Scholar
  19. 19.
    Debray H, Cartier P, Temstet A, Cendron J (1976) Child’s urinary lithiasis revealing a complete deficit in adenine phosphoribosyl transferase. Pediatr Res 10:762–766PubMedGoogle Scholar
  20. 20.
    Chiba P, Zwiauer K, Muller MM (1988) Characterization of an adenine phosphoribosyltransferase deficiency. Clin Chim Acta 172:141–147PubMedCrossRefGoogle Scholar
  21. 21.
    Cassidy MJ, McCulloch T, Fairbanks LD, Simmonds HA (2004) Diagnosis of adenine phosphoribosyltransferase deficiency as the underlying cause of renal failure in a renal transplant recipient. Nephrol Dial Transplant 19:736–738PubMedCrossRefGoogle Scholar
  22. 22.
    Benedetto B, Madden R, Kurbanov A, Braden G, Freeman J, Lipkowitz GS (2001) Adenine phosphoribosyltransferase deficiency and renal allograft dysfunction. Am J Kidney Dis 37:E37PubMedCrossRefGoogle Scholar
  23. 23.
    Becker MA, Schumacher HR Jr, Wortmann RL, MacDonald PA, Palo WA, Eustace D, Vernillet L, Joseph-Ridge N (2005) Febuxostat, a novel nonpurine selective inhibitor of xanthine oxidase: a twenty-eight-day, multicenter, phase II, randomized, double-blind, placebo-controlled, dose–response clinical trial examining safety and efficacy in patients with gout. Arthritis Rheum 52:916–923PubMedCrossRefGoogle Scholar
  24. 24.
    Milliner DS, Murphy ME (1993) Urolithiasis in pediatric patients. Mayo Clin Proc 68:241–248PubMedCrossRefGoogle Scholar
  25. 25.
    Chillaron J, Font-Llitjos M, Fort J, Zorzano A, Goldfarb DS, Nunes V, Palacin M (2010) Pathophysiology and treatment of cystinuria. Nat Rev Nephrol 6:424–434PubMedCrossRefGoogle Scholar
  26. 26.
    Fernandez E, Carrascal M, Rousaud F, Abian J, Zorzano A, Palacin M, Chillaron J (2002) rBAT-b(0,+)AT heterodimer is the main apical reabsorption system for cystine in the kidney. Am J Physiol Renal Physiol 283:F540–548PubMedGoogle Scholar
  27. 27.
    Martens K, Jaeken J, Matthijs G, Creemers JW (2008) Multi-system disorder syndromes associated with cystinuria type I. Curr Mol Med 8:544–550PubMedCrossRefGoogle Scholar
  28. 28.
    Dello Strologo L, Laurenzi C, Legato A, Pastore A (2007) Cystinuria in children and young adults: success of monitoring free-cystine urine levels. Pediatr Nephrol 22:1869–1873PubMedCrossRefGoogle Scholar
  29. 29.
    Lambert EH, Asplin JR, Herrell SD, Miller NL (2010) Analysis of 24-hour urine parameters as it relates to age of onset of cystine stone formation. J Endourol 24:1179–1182PubMedCrossRefGoogle Scholar
  30. 30.
    Worcester EM, Coe FL, Evan AP, Parks JH (2006) Reduced renal function and benefits of treatment in cystinuria vs other forms of nephrolithiasis. BJU Int 97:1285–1290PubMedCrossRefGoogle Scholar
  31. 31.
    Assimos DG, Leslie SW, Ng C, Streem SB, Hart LJ (2002) The impact of cystinuria on renal function. J Urol 168:27–30PubMedCrossRefGoogle Scholar
  32. 32.
    Nakagawa Y, Coe FL (1999) A modified cyanide-nitroprusside method for quantifying urinary cystine concentration that corrects for creatinine interference. Clin Chim Acta 289:57–68PubMedCrossRefGoogle Scholar
  33. 33.
    Evan AP, Coe FL, Lingeman JE, Shao Y, Matlaga BR, Kim SC, Bledsoe SB, Sommer AJ, Grynpas M, Phillips CL, Worcester EM (2006) Renal crystal deposits and histopathology in patients with cystine stones. Kidney Int 69:2227–2235PubMedCrossRefGoogle Scholar
  34. 34.
    Boutros M, Vicanek C, Rozen R, Goodyer P (2005) Transient neonatal cystinuria. Kidney Int 67:443–448PubMedCrossRefGoogle Scholar
  35. 35.
    Goldfarb DS, Coe FL, Asplin JR (2006) Urinary cystine excretion and capacity in patients with cystinuria. Kidney Int 69:1041–1047PubMedCrossRefGoogle Scholar
  36. 36.
    Rodman JS, Blackburn P, Williams JJ, Brown A, Pospischil MA, Peterson CM (1984) The effect of dietary protein on cystine excretion in patients with cystinuria. Clin Nephrol 22:273–278PubMedGoogle Scholar
  37. 37.
    Chow GK, Streem SB (1996) Medical treatment of cystinuria: results of contemporary clinical practice. J Urol 156:1576–1578PubMedCrossRefGoogle Scholar
  38. 38.
    Nakagawa Y, Asplin JR, Goldfarb DS, Parks JH, Coe FL (2000) Clinical use of cystine supersaturation measurements. J Urol 164:1481–1485PubMedCrossRefGoogle Scholar
  39. 39.
    Dolin DJ, Asplin JR, Flagel L, Grasso M, Goldfarb DS (2005) Effect of cystine-binding thiol drugs on urinary cystine capacity in patients with cystinuria. J Endourol 19:429–432PubMedCrossRefGoogle Scholar
  40. 40.
    Pareek G, Steele TH, Nakada SY (2005) Urological intervention in patients with cystinuria is decreased with medical compliance. J Urol 174:2250–2252PubMedCrossRefGoogle Scholar
  41. 41.
    Trinchieri A, Montanari E, Zanetti G, Lizzano R (2007) The impact of new technology in the treatment of cystine stones. Urol Res 35:129–132PubMedCrossRefGoogle Scholar
  42. 42.
    Wrong OM, Norden AG, Feest TG (1994) Dent’s disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. Q J Med 87:473–493Google Scholar
  43. 43.
    Lloyd SE, Gunther W, Pearce SH, Thomson A, Bianchi ML, Bosio M, Craig IW, Fisher SE, Scheinman SJ, Wrong O, Jentsch TJ, Thakker RV (1997) Characterisation of renal chloride channel, CLCN5, mutations in hypercalciuric nephrolithiasis (kidney stones) disorders. Hum Mol Genet 6:1233–1239PubMedCrossRefGoogle Scholar
  44. 44.
    Thakker RV (2000) Pathogenesis of Dent’s disease and related syndromes of X-linked nephrolithiasis. Kidney Int 57:787–793PubMedCrossRefGoogle Scholar
  45. 45.
    Reinhart SC, Norden AG, Lapsley M, Thakker RV, Pang J, Moses AM, Frymoyer PA, Favus MJ, Hoepner JA, Scheinman SJ (1995) Characterization of carrier females and affected males with X-linked recessive nephrolithiasis. J Am Soc Nephrol 5:1451–1461PubMedGoogle Scholar
  46. 46.
    Waldegger S, Jentsch TJ (2000) From tonus to tonicity: physiology of CLC chloride channels. J Am Soc Nephrol 11:1331–1339PubMedGoogle Scholar
  47. 47.
    Dutzler R (2004) Structural basis for ion conduction and gating in ClC chloride channels. FEBS Lett 564:229–233PubMedCrossRefGoogle Scholar
  48. 48.
    Gunther W, Luchow A, Cluzeaud F, Vandewalle A, Jentsch TJ (1998) ClC-5, the chloride channel mutated in Dent’s disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci U S A 95:8075–8080PubMedCrossRefGoogle Scholar
  49. 49.
    Devuyst O, Christie PT, Courtoy PJ, Beauwens R, Thakker RV (1999) Intra-renal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent’s disease. Hum Mol Genet 8:247–257PubMedCrossRefGoogle Scholar
  50. 50.
    Hara-Chikuma M, Wang Y, Guggino SE, Guggino WB, Verkman AS (2005) Impaired acidification in early endosomes of ClC-5 deficient proximal tubule. Biochem Biophys Res Commun 329:941–946PubMedCrossRefGoogle Scholar
  51. 51.
    Picollo A, Pusch M (2005) Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436:420–423PubMedCrossRefGoogle Scholar
  52. 52.
    Scheel O, Zdebik AA, Lourdel S, Jentsch TJ (2005) Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436:424–427PubMedCrossRefGoogle Scholar
  53. 53.
    Novarino G, Weinert S, Rickheit G, Jentsch TJ (2010) Endosomal chloride-proton exchange rather than chloride conductance is crucial for renal endocytosis. Science 328:1398–1401PubMedCrossRefGoogle Scholar
  54. 54.
    Friedrich T, Breiderhoff T, Jentsch TJ (1999) Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents. J Biol Chem 274:896–902PubMedCrossRefGoogle Scholar
  55. 55.
    Hryciw DH, Ekberg J, Pollock CA, Poronnik P (2006) ClC-5: a chloride channel with multiple roles in renal tubular albumin uptake. Int J Biochem Cell Biol 38:1036–1042PubMedCrossRefGoogle Scholar
  56. 56.
    Piwon N, Gunther W, Schwake M, Bosl MR, Jentsch TJ (2000) ClC-5 Cl--channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 408:369–373PubMedCrossRefGoogle Scholar
  57. 57.
    Wang SS, Devuyst O, Courtoy PJ, Wang XT, Wang H, Wang Y, Thakker RV, Guggino S, Guggino WB (2000) Mice lacking renal chloride channel, CLC-5, are a model for Dent’s disease, a nephrolithiasis disorder associated with defective receptor-mediated endocytosis. Hum Mol Genet 9:2937–2945PubMedCrossRefGoogle Scholar
  58. 58.
    Christensen EI, Devuyst O, Dom G, Nielsen R, Van der Smissen P, Verroust P, Leruth M, Guggino WB, Courtoy PJ (2003) Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci U S A 100:8472–8477PubMedCrossRefGoogle Scholar
  59. 59.
    Silva IV, Cebotaru V, Wang H, Wang XT, Wang SS, Guo G, Devuyst O, Thakker RV, Guggino WB, Guggino SE (2003) The ClC-5 knockout mouse model of Dent’s disease has renal hypercalciuria and increased bone turnover. J Bone Miner Res 18:615–623PubMedCrossRefGoogle Scholar
  60. 60.
    Leheste JR, Melsen F, Wellner M, Jansen P, Schlichting U, Renner-Muller I, Andreassen TT, Wolf E, Bachmann S, Nykjaer A, Willnow TE (2003) Hypocalcemia and osteopathy in mice with kidney-specific megalin gene defect. FASEB J 17:247–249PubMedGoogle Scholar
  61. 61.
    Devuyst O, Thakker RV (2010) Dent’s disease. Orphanet J Rare Dis 5:28PubMedCrossRefGoogle Scholar
  62. 62.
    Claverie-Martin F, Ramos-Trujillo E, Garcia-Nieto V (2011) Dent’s disease: clinical features and molecular basis. Pediatr Nephrol 26:693–704PubMedCrossRefGoogle Scholar
  63. 63.
    Hoopes RR Jr, Raja KM, Koich A, Hueber P, Reid R, Knohl SJ, Scheinman SJ (2004) Evidence for genetic heterogeneity in Dent’s disease. Kidney Int 65:1615–1620PubMedCrossRefGoogle Scholar
  64. 64.
    Hoopes RR Jr, Shrimpton AE, Knohl SJ, Hueber P, Hoppe B, Matyus J, Simckes A, Tasic V, Toenshoff B, Suchy SF, Nussbaum RL, Scheinman SJ (2005) Dent Disease with mutations in OCRL1. Am J Hum Genet 76:260–267PubMedCrossRefGoogle Scholar
  65. 65.
    Ghanekar Y, Lowe M (2005) Signalling for secretion. Nat Cell Biol 7:851–853PubMedCrossRefGoogle Scholar
  66. 66.
    Choudhury R, Diao A, Zhang F, Eisenberg E, Saint-Pol A, Williams C, Konstantakopoulos A, Lucocq J, Johannes L, Rabouille C, Greene LE, Lowe M (2005) Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell 16:3467–3479PubMedCrossRefGoogle Scholar
  67. 67.
    Tosetto E, Addis M, Caridi G, Meloni C, Emma F, Vergine G, Stringini G, Papalia T, Barbano G, Ghiggeri GM, Ruggeri L, Miglietti N, D Angelo A, Melis MA, Anglani F (2009) Locus heterogeneity of Dent’s disease: OCRL1 and TMEM27 genes in patients with no CLCN5 mutations. Pediatr Nephrol 24:1967–1973PubMedCrossRefGoogle Scholar
  68. 68.
    Hichri H, Rendu J, Monnier N, Coutton C, Dorseuil O, Poussou RV, Baujat G, Blanchard A, Nobili F, Ranchin B, Remesy M, Salomon R, Satre V, Lunardi J (2011) From Lowe syndrome to Dent disease: correlations between mutations of the OCRL1 gene and clinical and biochemical phenotypes. Hum Mutat 32:379–388PubMedCrossRefGoogle Scholar
  69. 69.
    Copelovitch L, Nash MA, Kaplan BS (2007) Hypothesis: Dent disease is an underrecognized cause of focal glomerulosclerosis. Clin J Am Soc Nephrol 2:914–918PubMedCrossRefGoogle Scholar
  70. 70.
    Frishberg Y, Dinour D, Belostotsky R, Becker-Cohen R, Rinat C, Feinstein S, Navon-Elkan P, Ben-Shalom E (2009) Dent’s disease manifesting as focal glomerulosclerosis: is it the tip of the iceberg? Pediatr Nephrol 24:2369–2373PubMedCrossRefGoogle Scholar
  71. 71.
    Bokenkamp A, Bockenhauer D, Cheong HI, Hoppe B, Tasic V, Unwin R, Ludwig M (2009) Dent-2 disease: a mild variant of Lowe syndrome. J Pediatr 155:94–99PubMedCrossRefGoogle Scholar
  72. 72.
    Davey PG, Gosling P (1982) Beta 2-microglobulin instability in pathological urine. Clin Chem 28:1330–1333PubMedGoogle Scholar
  73. 73.
    Suzuki S, Suzuki J, Kume K, Yoshida K, Suyama H, Kawasaki Y, Nozawa R, Suzuki H, Fujiki T, Kamiyama S, Suzuki A (1999) Poor renal accumulation of 99mTc-DMSA in idiopathic tubular proteinuria. Nephron 81:49–54PubMedCrossRefGoogle Scholar
  74. 74.
    Cebotaru V, Kaul S, Devuyst O, Cai H, Racusen L, Guggino WB, Guggino SE (2005) High citrate diet delays progression of renal insufficiency in the ClC-5 knockout mouse model of Dent’s disease. Kidney Int 68:642–652PubMedCrossRefGoogle Scholar
  75. 75.
    Michelis MF, Drash AL, Linarelli LG, De Rubertis FR, Davis BB (1972) Decreased bicarbonate threshold and renal magnesium wasting in a sibship with distal renal tubular acidosis. (Evaluation of the pathophysiological role of parathyroid hormone). Metabolism 21:905–920PubMedCrossRefGoogle Scholar
  76. 76.
    Weber S, Schneider L, Peters M, Misselwitz J, Ronnefarth G, Boswald M, Bonzel KE, Seeman T, Sulakova T, Kuwertz-Broking E, Gregoric A, Palcoux JB, Tasic V, Manz F, Scharer K, Seyberth HW, Konrad M (2001) Novel paracellin-1 mutations in 25 families with familial hypomagnesemia with hypercalciuria and nephrocalcinosis. J Am Soc Nephrol 12:1872–1881PubMedGoogle Scholar
  77. 77.
    Faguer S, Chauveau D, Cintas P, Tack I, Cointault O, Rostaing L, Vargas-Poussou R, Ribes D (2011) Renal, ocular, and neuromuscular involvements in patients with CLDN19 mutations. Clin J Am Soc Nephrol 6:355–360PubMedCrossRefGoogle Scholar
  78. 78.
    Godron A, Harambat J, Boccio V, Mensire A, May A, Rigothier C, Couzi L, Barrou B, Godin M, Chauveau D, Faguer S, Vallet M, Cochat P, Eckart P, Guest G, Guigonis V, Houillier P, Blanchard A, Jeunemaitre X, Vargas-Poussou R (2012) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis: phenotype-genotype correlation and outcome in 32 patients with CLDN16 or CLDN19 mutations. Clin J Am Soc Nephrol 7:801–809PubMedCrossRefGoogle Scholar
  79. 79.
    Rodriguez-Soriano J, Vallo A, Garcia-Fuentes M (1987) Hypomagnesaemia of hereditary renal origin. Pediatr Nephrol 1:465–472PubMedCrossRefGoogle Scholar
  80. 80.
    Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285:103–106PubMedCrossRefGoogle Scholar
  81. 81.
    Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C, Schlingmann KP, Schmid M, Rodriguez-Soriano J, Ariceta G, Cano F, Enriquez R, Juppner H, Bakkaloglu SA, Hediger MA, Gallati S, Neuhauss SC, Nurnberg P, Weber S (2006) Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79:949–957PubMedCrossRefGoogle Scholar
  82. 82.
    Li J, Ananthapanyasut W, Yu AS (2011) Claudins in renal physiology and disease. Pediatr Nephrol 26:2133–2142PubMedCrossRefGoogle Scholar
  83. 83.
    Blanchard A, Jeunemaitre X, Coudol P, Dechaux M, Froissart M, May A, Demontis R, Fournier A, Paillard M, Houillier P (2001) Paracellin-1 is critical for magnesium and calcium reabsorption in the human thick ascending limb of Henle. Kidney Int 59:2206–2215PubMedGoogle Scholar
  84. 84.
    Haisch L, Almeida JR, Abreu da Silva PR, Schlingmann KP, Konrad M (2011) The role of tight junctions in paracellular ion transport in the renal tubule: lessons learned from a rare inherited tubular disorder. Am J Kidney Dis 57:320–330PubMedCrossRefGoogle Scholar
  85. 85.
    Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S (2002) Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13:875–886PubMedGoogle Scholar
  86. 86.
    Hou J, Paul DL, Goodenough DA (2005) Paracellin-1 and the modulation of ion selectivity of tight junctions. J Cell Sci 118:5109–5118PubMedCrossRefGoogle Scholar
  87. 87.
    Hou J, Renigunta A, Konrad M, Gomes AS, Schneeberger EE, Paul DL, Waldegger S, Goodenough DA (2008) Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J Clin Invest 118:619–628PubMedGoogle Scholar
  88. 88.
    Hou J, Renigunta A, Gomes AS, Hou M, Paul DL, Waldegger S, Goodenough DA (2009) Claudin-16 and claudin-19 interaction is required for their assembly into tight junctions and for renal reabsorption of magnesium. Proc Natl Acad Sci U S A 106:15350–15355PubMedCrossRefGoogle Scholar
  89. 89.
    Hou J, Shan Q, Wang T, Gomes AS, Yan Q, Paul DL, Bleich M, Goodenough DA (2007) Transgenic RNAi depletion of claudin-16 and the renal handling of magnesium. J Biol Chem 282:17114–17122PubMedCrossRefGoogle Scholar
  90. 90.
    Kausalya PJ, Amasheh S, Gunzel D, Wurps H, Muller D, Fromm M, Hunziker W (2006) Disease-associated mutations affect intracellular traffic and paracellular Mg2+ transport function of Claudin-16. J Clin Invest 116:878–891PubMedCrossRefGoogle Scholar
  91. 91.
    Hampson G, Konrad MA, Scoble J (2008) Familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC): compound heterozygous mutation in the claudin 16 (CLDN16) gene. BMC Nephrol 9:12PubMedCrossRefGoogle Scholar
  92. 92.
    Stechman MJ, Loh NY, Thakker RV (2009) Genetic causes of hypercalciuric nephrolithiasis. Pediatr Nephrol 24:2321–2332PubMedCrossRefGoogle Scholar
  93. 93.
    Praga M, Vara J, Gonzalez-Parra E, Andres A, Alamo C, Araque A, Ortiz A, Rodicio JL (1995) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int 47:1419–1425PubMedCrossRefGoogle Scholar
  94. 94.
    Zimmermann B, Plank C, Konrad M, Stohr W, Gravou-Apostolatou C, Rascher W, Dotsch J (2006) Hydrochlorothiazide in CLDN16 mutation. Nephrol Dial Transplant 21:2127–2132PubMedCrossRefGoogle Scholar
  95. 95.
    Lieske JC, Spargo BH, Toback FG (1992) Endocytosis of calcium oxalate crystals and proliferation of renal tubular epithelial cells in a patient with type 1 primary hyperoxaluria. J Urol 148:1517–1519PubMedGoogle Scholar
  96. 96.
    Muda AO, Barsotti P, Rinaldi S, Rizzoni G, Faraggiana T (1997) Renal pathology in hyperoxaluria. In: Sessa A, Conte F, Meroni M, Battini G (eds) Hereditary kidney diseases. Karger, Basel, pp 160–166CrossRefGoogle Scholar
  97. 97.
    van Woerden CS, Groothoff JW, Wanders RJ, Davin JC, Wijburg FA (2003) Primary hyperoxaluria type 1 in The Netherlands: prevalence and outcome. Nephrol Dial Transplant 18:273–279PubMedCrossRefGoogle Scholar
  98. 98.
    Cochat P, Liutkus A, Fargue S, Basmaison O, Ranchin B, Rolland MO (2006) Primary hyperoxaluria type 1: still challenging! Pediatr Nephrol 21:1075–1081PubMedCrossRefGoogle Scholar
  99. 99.
    Coulter-Mackie MB (2005) Preliminary evidence for ethnic differences in primary hyperoxaluria type 1 genotype. Am J Nephrol 25:264–268PubMedCrossRefGoogle Scholar
  100. 100.
    Danpure CJ (2005) Molecular etiology of primary hyperoxaluria type 1: new directions for treatment. Am J Nephrol 25:303–310PubMedCrossRefGoogle Scholar
  101. 101.
    Milliner DS (2005) The primary hyperoxalurias: an algorithm for diagnosis. Am J Nephrol 25:154–160PubMedCrossRefGoogle Scholar
  102. 102.
    Belostotsky R, Seboun E, Idelson GH, Milliner DS, Becker-Cohen R, Rinat C, Monico CG, Feinstein S, Ben-Shalom E, Magen D, Weissman I, Charon C, Frishberg Y (2010) Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet 87:392–399PubMedCrossRefGoogle Scholar
  103. 103.
    Monico CG, Rossetti S, Belostotsky R, Cogal AG, Herges RM, Seide BM, Olson JB, Bergstrahl EJ, Williams HJ, Haley WE, Frishberg Y, Milliner DS (2011) Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. Clin J Am Soc Nephrol 6:2289–2295PubMedCrossRefGoogle Scholar
  104. 104.
    Riedel TJ, Johnson LC, Knight J, Hantgan RR, Holmes RP, Lowther WT (2011) Structural and biochemical studies of human 4-hydroxy-2-oxoglutarate aldolase: implications for hydroxyproline metabolism in primary hyperoxaluria. PLoS One 6:e26021PubMedCrossRefGoogle Scholar
  105. 105.
    Monico CG, Rossetti S, Olson JB, Milliner DS (2005) Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele. Kidney Int 67:1704–1709PubMedCrossRefGoogle Scholar
  106. 106.
    Monico CG, Rossetti S, Schwanz HA, Olson JB, Lundquist PA, Dawson DB, Harris PC, Milliner DS (2007) Comprehensive mutation screening in 55 probands with type 1 primary hyperoxaluria shows feasibility of a gene-based diagnosis. J Amer Soc Nephrol 18:1905–1914CrossRefGoogle Scholar
  107. 107.
    Lieske JC, Monico CG, Holmes WS, Bergstralh EJ, Slezak JM, Rohlinger AL, Olson JB, Milliner DS (2005) International registry for primary hyperoxaluria. Am J Nephrol 25:290–296PubMedCrossRefGoogle Scholar
  108. 108.
    Harambat J, Fargue S, Acquaviva C, Gagnadoux MF, Janssen F, Liutkus A, Mourani C, Macher MA, Abramowicz D, Legendre C, Durrbach A, Tsimaratos M, Nivet H, Girardin E, Schott AM, Rolland MO, Cochat P (2010) Genotype-phenotype correlation in primary hyperoxaluria type 1: the p.Gly170Arg AGXT mutation is associated with a better outcome. Kidney Int 77:443–449PubMedCrossRefGoogle Scholar
  109. 109.
    Frishberg Y, Rinat C, Shalata A, Khatib I, Feinstein S, Becker-Cohen R, Weismann I, Wanders RJ, Rumsby G, Roels F, Mandel H (2005) Intra-familial clinical heterogeneity: absence of genotype-phenotype correlation in primary hyperoxaluria type 1 in Israel. Am J Nephrol 25:269–275PubMedCrossRefGoogle Scholar
  110. 110.
    Hoppe B, Langman CB (2003) A United States survey on diagnosis, treatment, and outcome of primary hyperoxaluria. Pediatr Nephrol 18:986–991PubMedCrossRefGoogle Scholar
  111. 111.
    Milliner D (2006) Treatment of the primary hyperoxalurias: a new chapter. Kidney Int 70:1198–1200PubMedCrossRefGoogle Scholar
  112. 112.
    Leumann E, Hoppe B, Neuhaus T (1993) Management of primary hyperoxaluria: efficacy of oral citrate administration. Pediatr Nephrol 7:207–211PubMedCrossRefGoogle Scholar
  113. 113.
    Hoppe B, Groothoff JW, Hulton SA, Cochat P, Niaudet P, Kemper MJ, Deschenes G, Unwin R, Milliner D (2011) Efficacy and safety of Oxalobacter formigenes to reduce urinary oxalate in primary hyperoxaluria. Nephrol Dial Transplant 26:3609–3615PubMedCrossRefGoogle Scholar
  114. 114.
    Monico CG, Olson JB, Milliner DS (2005) Implications of genotype and enzyme phenotype in pyridoxine response of patients with type I primary hyperoxaluria. Am J Nephrol 25:183–188PubMedCrossRefGoogle Scholar
  115. 115.
    Illies F, Bonzel KE, Wingen AM, Latta K, Hoyer PF (2006) Clearance and removal of oxalate in children on intensified dialysis for primary hyperoxaluria type 1. Kidney Int 70:1642–1648PubMedCrossRefGoogle Scholar
  116. 116.
    Bergstralh EJ, Monico CG, Lieske JC, Herges RM, Langman CB, Hoppe B, Milliner DS (2010) Transplantation outcomes in primary hyperoxaluria. Am J Transplant 10:2493–2501PubMedCrossRefGoogle Scholar
  117. 117.
    Millan MT, Berquist WE, So SK, Sarwal MM, Wayman KI, Cox KL, Filler G, Salvatierra O Jr, Esquivel CO (2003) One hundred percent patient and kidney allograft survival with simultaneous liver and kidney transplantation in infants with primary hyperoxaluria: a single-center experience. Transplantation 76:1458–1463PubMedCrossRefGoogle Scholar
  118. 118.
    Silva M, Silva CH, Iulek J, Thiemann OH (2004) Three-dimensional structure of human adenine phosphoribosyltransferase and its relation to DHA-urolithiasis. Biochemistry 43:7663–7671PubMedCrossRefGoogle Scholar
  119. 119.
    Matos V, van Melle G, Boulat O, Markert M, Bachmann C, Guignard JP (1997) Urinary phosphate/creatinine, calcium/creatinine, and magnesium/creatinine ratios in a healthy pediatric population. J Pediatr 131:252–257PubMedCrossRefGoogle Scholar
  120. 120.
    Hoppe B, Kemper MJ (2010) Diagnostic examination of the child with urolithiasis or nephrocalcinosis. Pediatr Nephrol 25:403–413PubMedCrossRefGoogle Scholar
  121. 121.
    Rumsby G (1998) Experience in prenatal diagnosis of primary hyperoxaluria type 1. J Nephrol 11(Suppl 1):13–14PubMedGoogle Scholar
  122. 122.
    Barratt TM, Kasidas GP, Murdoch I, Rose GA (1991) Urinary oxalate and glycolate excretion and plasma oxalate concentration. Arch Dis Child 66:501–503PubMedCrossRefGoogle Scholar
  123. 123.
    von Schnakenburg C, Byrd DJ, Latta K, Reusz GS, Graf D, Brodehl J (1994) Determination of oxalate excretion in spot urines of healthy children by ion chromatography. Eur J Clin Chem Clin Biochem 32:27–29Google Scholar
  124. 124.
    Gibbs DA, Watts RW (1969) The variation of urinary oxalate excretion with age. J Lab Clin Med 73:901–908PubMedGoogle Scholar
  125. 125.
    Morgenstern BZ, Milliner DS, Murphy ME, Simmons PS, Moyer TP, Wilson DM, Smith LH (1993) Urinary oxalate and glycolate excretion patterns in the first year of life: a longitudinal study. J Pediatr 123:248–251PubMedCrossRefGoogle Scholar
  126. 126.
    Campfield T, Braden G (1989) Urinary oxalate excretion by very low birth weight infants receiving parenteral nutrition. Pediatrics 84:860–863PubMedGoogle Scholar
  127. 127.
    Milliner DS, Eickholt JT, Bergstralh EJ, Wilson DM, Smith LH (1994) Results of long-term treatment with orthophosphate and pyridoxine in patients with primary hyperoxaluria. N Engl J Med 331:1553–1558PubMedCrossRefGoogle Scholar
  128. 128.
    Morgan SH, Purkiss P, Watts RW, Mansell MA (1987) Oxalate dynamics in chronic renal failure. Comparison with normal subjects and patients with primary hyperoxaluria. Nephron 46:253–257PubMedCrossRefGoogle Scholar

Copyright information

© IPNA 2013

Authors and Affiliations

  • Vidar O. Edvardsson
    • 1
    • 2
    • 3
  • David S. Goldfarb
    • 1
    • 4
  • John C. Lieske
    • 1
    • 6
    • 7
  • Lada Beara-Lasic
    • 1
    • 4
  • Franca Anglani
    • 1
    • 5
  • Dawn S. Milliner
    • 1
    • 8
  • Runolfur Palsson
    • 1
    • 3
    • 9
  1. 1.The Rare Kidney Stone ConsortiumMayo Clinic, RochesterUSA
  2. 2.Children’s Medical CenterLandspitali - The National University Hospital of IcelandReykjavikIceland
  3. 3.Faculty of Medicine, School of Health SciencesUniversity of IcelandReykjavikIceland
  4. 4.Nephrology Section, NY Harbor VA Medical Center, and Division of NephrologyNYU School of MedicineNew YorkUSA
  5. 5.Division of Nephrology, Department of MedicineUniversity of PaduaPadovaItaly
  6. 6.Mayo ClinicDivision of Nephrology and Hypertension, Department of Internal Medicine and Renal Function LaboratoryRochesterUSA
  7. 7.Mayo ClinicDepartment of Laboratory Medicine and PathologyRochesterUSA
  8. 8.Mayo Clinic Division of Nephrology, Departments of Pediatrics and Internal MedicineMayo Clinic Hyperoxaluria CenterRochesterUSA
  9. 9.Division of Nephrology, Internal Medicine ServicesLandspitali – The National University Hospital of IcelandReykjavikIceland

Personalised recommendations