Skip to main content

Advertisement

Log in

HNF1B and PAX2 mutations are a common cause of renal hypodysplasia in the CKiD cohort

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Malformations of the kidney and lower urinary tract are the most frequent cause of end-stage renal disease in children. Mutations in HNF1Β and PAX2 commonly cause syndromic urinary tract malformation. We searched for mutations in HNF1Β and PAX2 in North American children with renal aplasia and hypodysplasia (RHD) enrolled in the Chronic Kidney Disease in Children Cohort Study (CKiD). We identified seven mutations in this multiethnic cohort (10% of patients). In HNF1Β, we identified a nonsense (p.R181X), a missense (p.S148L), and a frameshift (Y352fsX352) mutation, and one whole gene deletion. In PAX2, we identified one splice site (IVS4-1G>T), one missense (p.G24E), and one frameshift (G24fsX28) mutation. All mutations occurred in Caucasians, accounting for 14% of disease in this subgroup. The absence of mutations in other ethnicities is likely due to the limited sample size. There were no differences in clinical parameters (age, baseline eGFR, blood pressure, body mass index, progression) between patients with or without HNF1B and PAX2 mutations. A significant proportion of North American Caucasian patients with RHD carry mutations in HNF1Β or PAX2 genes. These patients should be evaluated for complications (e.g., diabetes for HNF1Β mutations, colobomas for PAX2) and referred for genetic counseling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Warady BA, Chadha V (2007) Chronic kidney disease in children: the global perspective. Pediatr Nephrol 22:1999–2009

    PubMed  PubMed Central  Google Scholar 

  2. Hiraoka M, Tsukahara H, Ohshima Y, Kasuga K, Ishihara Y, Mayumi M (2002) Renal aplasia is the predominant cause of congenital solitary kidneys. Kidney Int 61:1840–1844

    PubMed  Google Scholar 

  3. Winyard P, Chitty LS (2008) Dysplastic kidneys. Semin Fetal Neonatal Med 13:142–151

    PubMed  Google Scholar 

  4. Klaassen I, Neuhaus TJ, Mueller-Wiefel DE, Kemper MJ (2007) Antenatal oligohydramnios of renal origin: long-term outcome. Nephrol Dial Transplant 22:432–439

    PubMed  Google Scholar 

  5. Ismaili K, Schurmans T, Wissing KM, Hall M, Van Aelst C, Janssen F (2001) Early prognostic factors of infants with chronic renal failure caused by renal dysplasia. Pediatr Nephrol 16:260–264

    CAS  PubMed  Google Scholar 

  6. Roodhooft AM, Birnholz JC, Holmes LB (1984) Familial nature of congenital absence and severe dysgenesis of both kidneys. N Engl J Med 310:1341–1345

    CAS  PubMed  Google Scholar 

  7. Sanna-Cherchi S, Caridi G, Weng PL, Scolari F, Perfumo F, Gharavi AG, Ghiggeri GM (2007) Genetic approaches to human renal agenesis/hypoplasia and dysplasia. Pediatr Nephrol 22:1675–1684

    PubMed  PubMed Central  Google Scholar 

  8. Heidet L, Decramer S, Pawtowski A, Moriniere V, Bandin F, Knebelmann B, Lebre AS, Faguer S, Guigonis V, Antignac C, Salomon R (2010) Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin J Am Soc Nephrol 5:1079–1090

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Weber S, Moriniere V, Knuppel T, Charbit M, Dusek J, Ghiggeri GM, Jankauskiene A, Mir S, Montini G, Peco-Antic A, Wuhl E, Zurowska AM, Mehls O, Antignac C, Schaefer F, Salomon R (2006) Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J Am Soc Nephrol 17:2864–2870

    CAS  PubMed  Google Scholar 

  10. Ulinski T, Lescure S, Beaufils S, Guigonis V, Decramer S, Morin D, Clauin S, Deschenes G, Bouissou F, Bensman A, Bellanne-Chantelot C (2006) Renal phenotypes related to hepatocyte nuclear factor-1beta (TCF2) mutations in a pediatric cohort. J Am Soc Nephrol 17:497–503

    CAS  PubMed  Google Scholar 

  11. Edghill EL, Oram RA, Owens M, Stals KL, Harries LW, Hattersley AT, Ellard S, Bingham C (2008) Hepatocyte nuclear factor-1beta gene deletions—a common cause of renal disease. Nephrol Dial Transplant 23:627–635

    CAS  PubMed  Google Scholar 

  12. Furth SL, Cole SR, Moxey-Mims M, Kaskel F, Mak R, Schwartz G, Wong C, Munoz A, Warady BA (2006) Design and methods of the Chronic Kidney Disease in Children (CKiD) prospective cohort study. Clin J Am Soc Nephrol 1:1006–1015

    PubMed  Google Scholar 

  13. Schwartz GJ, Furth SL (2007) Glomerular filtration rate measurement and estimation in chronic kidney disease. Pediatr Nephrol 22:1839–1848

    PubMed  Google Scholar 

  14. Stenson PD, Ball EV, Howells K, Phillips AD, Mort M, Cooper DN (2009) The Human Gene Mutation Database: providing a comprehensive central mutation database for molecular diagnostics and personalized genomics. Hum Genomics 4:69–72

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    CAS  PubMed  Google Scholar 

  16. Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30:3894–3900

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31:3812–3814

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Capriotti E, Calabrese R, Casadio R (2006) Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 22:2729–2734

    CAS  PubMed  Google Scholar 

  19. Zhang C, Li WH, Krainer AR, Zhang MQ (2008) RNA landscape of evolution for optimal exon and intron discrimination. Proc Natl Acad Sci USA 105:5797–5802

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C (2009) Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37:e67

    PubMed  PubMed Central  Google Scholar 

  21. Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31:3568–3571

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shen Y, Wu BL (2009) Designing a simple multiplex ligation-dependent probe amplification (MLPA) assay for rapid detection of copy number variants in the genome. J Genet Genomics 36:257–265

    CAS  PubMed  Google Scholar 

  23. Mefford HC, Clauin S, Sharp AJ, Moller RS, Ullmann R, Kapur R, Pinkel D, Cooper GM, Ventura M, Ropers HH, Tommerup N, Eichler EE, Bellanne-Chantelot C (2007) Recurrent reciprocal genomic rearrangements of 17q12 are associated with renal disease, diabetes, and epilepsy. Am J Hum Genet 81:1057–1069

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Edghill EL, Bingham C, Ellard S, Hattersley AT (2006) Mutations in hepatocyte nuclear factor-1beta and their related phenotypes. J Med Genet 43:84–90

    CAS  PubMed  Google Scholar 

  25. Bellanne-Chantelot C, Chauveau D, Gautier JF, Dubois-Laforgue D, Clauin S, Beaufils S, Wilhelm JM, Boitard C, Noel LH, Velho G, Timsit J (2004) Clinical spectrum associated with hepatocyte nuclear factor-1beta mutations. Ann Intern Med 140:510–517

    CAS  PubMed  Google Scholar 

  26. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298

    CAS  PubMed  Google Scholar 

  27. Amiel J, Audollent S, Joly D, Dureau P, Salomon R, Tellier AL, Auge J, Bouissou F, Antignac C, Gubler MC, Eccles MR, Munnich A, Vekemans M, Lyonnet S, Attie-Bitach T (2000) PAX2 mutations in renal-coloboma syndrome: mutational hotspot and germline mosaicism. Eur J Hum Genet 8:820–826

    CAS  PubMed  Google Scholar 

  28. Porteous S, Torban E, Cho NP, Cunliffe H, Chua L, McNoe L, Ward T, Souza C, Gus P, Giugliani R, Sato T, Yun K, Favor J, Sicotte M, Goodyer P, Eccles M (2000) Primary renal hypoplasia in humans and mice with PAX2 mutations: evidence of increased apoptosis in fetal kidneys of Pax2(1Neu) +/− mutant mice. Hum Mol Genet 9:1–11

    CAS  PubMed  Google Scholar 

  29. Schimmenti LA, Shim HH, Wirtschafter JD, Panzarino VA, Kashtan CE, Kirkpatrick SJ, Wargowski DS, France TD, Michel E, Dobyns WB (1999) Homonucleotide expansion and contraction mutations of PAX2 and inclusion of Chiari 1 malformation as part of renal-coloboma syndrome. Hum Mutat 14:369–376

    CAS  PubMed  Google Scholar 

  30. Eccles MR, Schimmenti LA (1999) Renal-coloboma syndrome: a multi-system developmental disorder caused by PAX2 mutations. Clin Genet 56:1–9

    CAS  PubMed  Google Scholar 

  31. Schimmenti LA, Cunliffe HE, McNoe LA, Ward TA, French MC, Shim HH, Zhang YH, Proesmans W, Leys A, Byerly KA, Braddock SR, Masuno M, Imaizumi K, Devriendt K, Eccles MR (1997) Further delineation of renal-coloboma syndrome in patients with extreme variability of phenotype and identical PAX2 mutations. Am J Hum Genet 60:869–878

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Nakayama M, Nozu K, Goto Y, Kamei K, Ito S, Sato H, Emi M, Nakanishi K, Tsuchiya S, Iijima K (2010) HNF1B alterations associated with congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 25:1073–1079

    PubMed  Google Scholar 

  33. Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, Lindner T, Yamagata K, Ogata M, Tomonaga O, Kuroki H, Kasahara T, Iwamoto Y, Bell GI (1997) Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 17:384–385

    CAS  PubMed  Google Scholar 

  34. Lindner TH, Njolstad PR, Horikawa Y, Bostad L, Bell GI, Sovik O (1999) A novel syndrome of diabetes mellitus, renal dysfunction and genital malformation associated with a partial deletion of the pseudo-POU domain of hepatocyte nuclear factor-1beta. Hum Mol Genet 8:2001–2008

    CAS  PubMed  Google Scholar 

  35. Kolatsi-Joannou M, Bingham C, Ellard S, Bulman MP, Allen LI, Hattersley AT, Woolf AS (2001) Hepatocyte nuclear factor-1beta: a new kindred with renal cysts and diabetes and gene expression in normal human development. J Am Soc Nephrol 12:2175–2180

    CAS  PubMed  Google Scholar 

  36. Montoli A, Colussi G, Massa O, Caccia R, Rizzoni G, Civati G, Barbetti F (2002) Renal cysts and diabetes syndrome linked to mutations of the hepatocyte nuclear factor-1 beta gene: description of a new family with associated liver involvement. Am J Kidney Dis 40:397–402

    PubMed  Google Scholar 

  37. Bingham C, Hattersley AT (2004) Renal cysts and diabetes syndrome resulting from mutations in hepatocyte nuclear factor-1beta. Nephrol Dial Transplant 19:2703–2708

    CAS  PubMed  Google Scholar 

  38. Zaffanello M, Brugnara M, Franchini M, Fanos V (2008) TCF2 gene mutation leads to nephro-urological defects of unequal severity: an open question. Med Sci Monit 14:RA78–RA86

    CAS  PubMed  Google Scholar 

  39. Oram RA, Edghill EL, Blackman J, Taylor MJ, Kay T, Flanagan SE, Ismail-Pratt I, Creighton SM, Ellard S, Hattersley AT, Bingham C (2010) Mutations in the hepatocyte nuclear factor-1beta (HNF1B) gene are common with combined uterine and renal malformations but are not found with isolated uterine malformations. Am J Obstet Gynecol 203(364):e361–e365

    Google Scholar 

  40. Gresh L, Fischer E, Reimann A, Tanguy M, Garbay S, Shao X, Hiesberger T, Fiette L, Igarashi P, Yaniv M, Pontoglio M (2004) A transcriptional network in polycystic kidney disease. EMBO J 23:1657–1668

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hiesberger T, Bai Y, Shao X, McNally BT, Sinclair AM, Tian X, Somlo S, Igarashi P (2004) Mutation of hepatocyte nuclear factor-1beta inhibits Pkhd1 gene expression and produces renal cysts in mice. J Clin Invest 113:814–825

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sharp AJ, Hansen S, Selzer RR, Cheng Z, Regan R, Hurst JA, Stewart H, Price SM, Blair E, Hennekam RC, Fitzpatrick CA, Segraves R, Richmond TA, Guiver C, Albertson DG, Pinkel D, Eis PS, Schwartz S, Knight SJ, Eichler EE (2006) Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat Genet 38:1038–1042

    CAS  PubMed  Google Scholar 

  43. Weaver RG, Cashwell LF, Lorentz W, Whiteman D, Geisinger KR, Ball M (1988) Optic nerve coloboma associated with renal disease. Am J Med Genet 29:597–605

    CAS  PubMed  Google Scholar 

  44. Sanyanusin P, Schimmenti LA, McNoe LA, Ward TA, Pierpont ME, Sullivan MJ, Dobyns WB, Eccles MR (1995) Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat Genet 9:358–364

    CAS  PubMed  Google Scholar 

  45. Dressler GR, Deutsch U, Chowdhury K, Nornes HO, Gruss P (1990) Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109:787–795

    CAS  PubMed  Google Scholar 

  46. Schimmenti LA, Manligas GS, Sieving PA (2003) Optic nerve dysplasia and renal insufficiency in a family with a novel PAX2 mutation, Arg115X: further ophthalmologic delineation of the renal-coloboma syndrome. Ophthalmic Genet 24:191–202

    PubMed  Google Scholar 

  47. Cheong HI, Cho HY, Kim JH, Yu YS, Ha IS, Choi Y (2007) A clinico-genetic study of renal coloboma syndrome in children. Pediatr Nephrol 22:1283–1289

    PubMed  Google Scholar 

  48. Martinovic-Bouriel J, Benachi A, Bonniere M, Brahimi N, Esculpavit C, Morichon N, Vekemans M, Antignac C, Salomon R, Encha-Razavi F, Attie-Bitach T, Gubler MC (2010) PAX2 mutations in fetal renal hypodysplasia. Am J Med Genet A 152A:830–835

    CAS  PubMed  Google Scholar 

  49. Unger S, Bohm D, Kaiser FJ, Kaulfuss S, Borozdin W, Buiting K, Burfeind P, Bohm J, Barrionuevo F, Craig A, Borowski K, Keppler-Noreuil K, Schmitt-Mechelke T, Steiner B, Bartholdi D, Lemke J, Mortier G, Sandford R, Zabel B, Superti-Furga A, Kohlhase J (2008) Mutations in the cyclin family member FAM58A cause an X-linked dominant disorder characterized by syndactyly, telecanthus and anogenital and renal malformations. Nat Genet 40:287–289

    CAS  PubMed  Google Scholar 

  50. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, Lee C, Turner EH, Smith JD, Rieder MJ, Yoshiura K, Matsumoto N, Ohta T, Niikawa N, Nickerson DA, Bamshad MJ, Shendure J (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42:790–793

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the patients for their participation in this study. We thank Catarina Quinzii and Michio Hirano at The H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders at Columbia University for assistance with MLPA. This study was supported by 1R01DK080099 (AGG). Rosemary Thomas is supported by the T32 NIH training grant. Simone Sanna-Cherchi is supported by the American Heart Association Scientist Development Grant (0930151N) and the American Society of Nephrology Career Development Grant. Data in this manuscript were collected by the Chronic Kidney Disease in Children prospective cohort study (CKiD) with clinical coordinating centers (Principal Investigators) at the Children’s Mercy Hospital and the University of Missouri, Kansas City (Bradley Warady, MD) and the Children’s Hospital of Philadelphia (Susan Furth, MD, PhD), the central laboratory (Principal Investigator) at the Department of Pediatrics, University of Rochester Medical Center (George Schwartz, MD), and the data coordinating center (Principal Investigator) at the Johns Hopkins Bloomberg School of Public Health (Alvaro Muñoz, PhD). The CKiD is funded by the National Institute of Diabetes and Digestive and Kidney Diseases, with additional funding from the National Institute of Child Health and Human Development, and the National Heart, Lung, and Blood Institute (U01 DK066143, U01 DK066174, U01 DK082194, U01 DK066116). The CKiD website is located at https://doi.org/www.statepi.jhsph.edu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali G. Gharavi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Prediction of pathogenicity via publicly available programs. (DOC 52 kb)

Supplementary Table 2

Previously annotated SNPs found in the CKiD cohort. (DOC 94 kb)

Supplementary Table 3

New variants HNF1B and PAX2. (DOC 107 kb)

Supplemental Table 4

Clinical parameters of patients with and without mutations. (DOC 66 kb)

Supplementary Fig. 1

Whole gene deletion of HNF1B (DOC 20.7 mb)

Supplementary Fig. 2

Conservations among species for variants in PAX2 (DOC 1.08 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, R., Sanna-Cherchi, S., Warady, B.A. et al. HNF1B and PAX2 mutations are a common cause of renal hypodysplasia in the CKiD cohort. Pediatr Nephrol 26, 897–903 (2011). https://doi.org/10.1007/s00467-011-1826-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-011-1826-9

Keywords

Navigation