Abstract
An understanding of the pathophysiologic mechanisms of post-renal transplant (PRT) bone disease is of important clinical significance. Although bone disease occurs after all solid organ transplantation, the cumulative skeletal fracture rate remains high in PRT subjects while reaching a plateau with other transplantations. One major difference in the pathophysiology of PRT bone disease is, perhaps, due to persistent renal phosphorus (Pi) wasting. Novel phosphaturic agents have recently been suggested to participate in the development of bone disease in PRT subjects. However, it is unclear as of yet whether these factors alone or in conjunction with excess parathyroid hormone (PTH) secretion play a key role in the development of negative Pi balance and consequent bone disease in this population. In this review, I present a natural history of PRT hypophosphatemia and persistent renal Pi leak, provide pathophysiologic insight into these developments, and discuss the difficulty in diagnosing these phenotypes in both adult and pediatric populations.
This is a preview of subscription content, access via your institution.




References
- 1.
Papalois VE, Najarian JS (2001) Pediatric kidney transplantation: historic hallmarks and a personal perspective. Pediatr Transplant 5:239–245
- 2.
Calne RY, White DJ, Thiru S, Evans DB, McMaster P, Dunn DC, Craddock GN, Pentlow BD, Rolles K (1978) Cyclosporin A in patients receiving renal allografts from cadaver donors. Lancet 2:1323–1327
- 3.
Goldstein G, Kremer AB, Barnes L, Hirsch RL (1987) OKT3 monoclonal antibody reversal of renal and hepatic rejection in pediatric patients. J Pediatr 111:1046–1050
- 4.
Jensen CW, Jordan ML, Schneck FX, Shapiro R, Tzakis A, Hakala TR, Starzl TE (1991) Pediatric renal transplantation under FK 506 immunosuppression. Transplant Proc 23:3075–3077
- 5.
Vincenti F, Kirkman R, Light S, Bumgardner G, Pescovitz M, Halloran P, Neylan J, Wilkinson A, Ekberg H, Gaston R, Backman L, Burdick J (1998) Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Engl J Med 338:161–165
- 6.
Saland JM (2004) Osseous complications of pediatric transplantation. Pediatr Transplant 8:400–415
- 7.
Sanchez CP, Salusky IB, Kuizon BD, Ramirez JA, Gales B, Ettenger RB, Goodman WG (1998) Bone disease in children and adolescents undergoing successful renal transplantation. Kidney Int 53:1358–1364
- 8.
Smets YF, van der Pijl JW, de Fijter JW, Ringers J, Lemkes HH, Hamdy NA (1998) Low bone mass and high incidence of fractures after successful simultaneous pancreas-kidney transplantation. Nephrol Dial Transplant 13:1250–1255
- 9.
Vautour LM, Melton LJ 3rd, Clarke BL, Achenbach SJ, Oberg AL, McCarthy JT (2004) Long-term fracture risk following renal transplantation: a population-based study. Osteoporos Int 15:160–167
- 10.
Ghanekar H, Welch BJ, Moe OW, Sakhaee K (2006) Post-renal transplantation hypophosphatemia: a review and novel insights. Curr Opin Nephrol Hypertens 15:97–104
- 11.
Epstein S (1996) Post-transplantation bone disease: the role of immunosuppressive agents and the skeleton. J Bone Miner Res 11:1–7
- 12.
Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest 102:274–282
- 13.
Vega D, Sakhaee K (2007) Osteoporosis following solid organ transplantation. Future Rheumatol 2:341–345
- 14.
Shane E, Rivas M, Staron RB, Silverberg SJ, Seibel MJ, Kuiper J, Mancini D, Addesso V, Michler RE, Factor-Litvak P (1996) Fracture after cardiac transplantation: a prospective longitudinal study. J Clin Endocrinol Metab 81:1740–1746
- 15.
Ninkovic M, Skingle SJ, Bearcroft PW, Bishop N, Alexander GJ, Compston JE (2000) Incidence of vertebral fractures in the first three months after orthotopic liver transplantation. Eur J Gastroenterol Hepatol 12:931–935
- 16.
Takeda E, Taketani Y, Sawada N, Sato T, Yamamoto H (2004) The regulation and function of phosphate in the human body. Biofactors 21:345–355
- 17.
Levi M, Kempson SA, Lotscher M, Biber J, Murer H (1996) Molecular regulation of renal phosphate transport. J Membr Biol 154:1–9
- 18.
Biber J, Custer M, Werner A, Kaissling B, Murer H (1993) Localization of NaPi-1, a Na/Pi cotransporter, in rabbit kidney proximal tubules. II. Localization by immunohistochemistry. Pflugers Arch 424:210–215
- 19.
Custer M, Lotscher M, Biber J, Murer H, Kaissling B (1994) Expression of Na-P(I) cotransport in rat kidney: localization by RT-PCR and immunohistochemistry. Am J Physiol 266:F767–F774
- 20.
Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/Pi cotransporter. J Biol Chem 277:19665–19672
- 21.
Hilfiker H, Hattenhauer O, Traebert M, Forster I, Murer H, Biber J (1998) Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc Natl Acad Sci USA 95:14564–14569
- 22.
Murer H, Hernando N, Forster I, Biber J (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80:1373–1409
- 23.
Tenenhouse HS (2007) Phosphate transport: molecular basis, regulation and pathophysiology. J Steroid Biochem Mol Biol 103:572–577
- 24.
Berndt TJ, Schiavi S, Kumar R (2005) "Phosphatonins" and the regulation of phosphorus homeostasis. Am J Physiol Renal Physiol 289:F1170–F1182
- 25.
Yan X, Yokote H, Jing X, Yao L, Sawada T, Zhang Y, Liang S, Sakaguchi K (2005) Fibroblast growth factor 23 reduces expression of type IIa Na+/Pi co-transporter by signaling through a receptor functionally distinct from the known FGFRs in opossum kidney cells. Genes Cells 10:489–502
- 26.
Levi M, Shayman JA, Abe A, Gross SK, McCluer RH, Biber J, Murer H, Lötscher M, Cronin RE (1995) Dexamethasone modulates rat renal brush border membrane phosphate transporter mRNA and protein abundance and glycosphingolipid composition. J Clin Invest 96:207–216
- 27.
Alcalde AI, Sarasa M, Raldua D, Aramayona J, Morales R, Biber J, Murer H, Levi M, Sorribas V (1999) Role of thyroid hormone in regulation of renal phosphate transport in young and aged rats. Endocrinology 140:1544–1551
- 28.
Ambuhl PM, Meier D, Wolf B, Dydak U, Boesiger P, Binswanger U (1999) Metabolic aspects of phosphate replacement therapy for hypophosphatemia after renal transplantation: impact on muscular phosphate content, mineral metabolism, and acid/base homeostasis. Am J Kidney Dis 34:875–883
- 29.
Levi M (2001) Post-transplant hypophosphatemia. Kidney Int 59:2377–2387
- 30.
Felsenfeld AJ, Gutman RA, Drezner M, Llach F (1986) Hypophosphatemia in long-term renal transplant recipients: effects on bone histology and 1, 25-dihydroxycholecalciferol. Miner Electrolyte Metab 12:333–341
- 31.
Portale AA, Halloran BP, Morris RC Jr (1989) Physiologic regulation of the serum concentration of 1, 25-dihydroxyvitamin D by phosphorus in normal men. J Clin Invest 83:1494–1499
- 32.
Green J, Debby H, Lederer E, Levi M, Zajicek HK, Bick T (2001) Evidence for a PTH-independent humoral mechanism in post-transplant hypophosphatemia and phosphaturia. Kidney Int 60:1182–1196
- 33.
Heaney RP, Abrams S, Dawson-Hughes B, Looker A, Marcus R, Matkovic V, Weaver C (2000) Peak bone mass. Osteoporos Int 11:985–1009
- 34.
Garabedian M, Silve C, Levy D, Bourdeau A, Ulmann A, Broyer M, Balsan S (1980) Chronic hypophosphatemia in kidney transplanted children and young adults. Adv Exp Med Biol 128:249–254
- 35.
Brodehl J, Krause A, Hoyer PF (1988) Assessment of maximal tubular phosphate reabsorption: comparison of direct measurement with the nomogram of Bijvoet. Pediatr Nephrol 2:183–189
- 36.
Bernheim J, Touraine JL, David L, Faivre JM, Traeger J (1976) Evolution of secondary hyperparathyroidism after renal transplantation. Nephron 16:381–387
- 37.
Claesson K, Hellman P, Frodin L, Rastad J (1998) Prospective study of calcium homeostasis after renal transplantation. World J Surg 22:635–641, discussion 41-2
- 38.
Rosenbaum RW, Hruska KA, Korkor A, Anderson C, Slatopolsky E (1981) Decreased phosphate reabsorption after renal transplantation: Evidence for a mechanism independent of calcium and parathyroid hormone. Kidney Int 19:568–578
- 39.
Salusky IB, Coburn JW, Brill J, Foley J, Slatopolsky E, Fine RN, Goodman WG (1988) Bone disease in pediatric patients undergoing dialysis with CAPD or CCPD. Kidney Int 33:975–982
- 40.
Salusky IB, Ramirez JA, Oppenheim W, Gales B, Segre GV, Goodman WG (1994) Biochemical markers of renal osteodystrophy in pediatric patients undergoing CAPD/CCPD. Kidney Int 45:253–258
- 41.
Graf H, Kovarik J, Stummvoll HK, Wolf A, Pinggera WF (1979) Handling of phosphate by the transplanted kidney. Proc Eur Dial Transplant Assoc 16:624–629
- 42.
Parfitt AM, Kleerekoper M, Cruz C (1986) Reduced phosphate reabsorption unrelated to parathyroid hormone after renal transplantation: implications for the pathogenesis of hyperparathyroidism in chronic renal failure. Miner Electrolyte Metab 12:356–362
- 43.
White KE, Jonsson KB, Carn G, Hampson G, Spector TD, Mannstadt M, Lorenz-Depiereux B, Miyauchi A, Yang IM, Ljunggren O, Meitinger T, Strom TM, Jüppner H, Econs MJ (2001) The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab 86:497–500
- 44.
Jonsson KB, Zahradnik R, Larsson T, White KE, Sugimoto T, Imanishi Y, Yamamoto T, Hampson G, Koshiyama H, Ljunggren O, Oba K, Yang IM, Miyauchi A, Econs MJ, Lavigne J, Jüppner H (2003) Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. N Engl J Med 348:1656–1663
- 45.
White KE, Evans WE, O’Riordan J, Speer MC, Econs MJ, Lorenz-Depiereux B, Grabowski M, Meitinger T, Strom TM (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345–348
- 46.
Riancho JA, de Francisco AL, del Arco C, Amado JA, Cotorruelo JG, Arias M, Gonzalez-Macias J (1988) Serum levels of 1, 25-dihydroxyvitamin D after renal transplantation. Miner Electrolyte Metab 14:332–337
- 47.
Steiner RW, Ziegler M, Halasz NA, Catherwood BD, Manolagas S, Deftos LJ (1993) Effect of daily oral vitamin D and calcium therapy, hypophosphatemia, and endogenous 1–25 dihydroxycholecalciferol on parathyroid hormone and phosphate wasting in renal transplant recipients. Transplantation 56:843–846
- 48.
Bhan I, Shah A, Holmes J, Isakova T, Gutierrez O, Burnett SM, Jüppner H, Wolf M (2006) Post-transplant hypophosphatemia: tertiary 'hyper-phosphatoninism'? Kidney Int 70:1486–1494
- 49.
Imanishi Y, Inaba M, Nakatsuka K, Nagasue K, Okuno S, Yoshihara A, Miura M, Miyauchi A, Kobayashi K, Miki T, Shoji T, Ishimura E, Nishizawa Y (2004) FGF-23 in patients with end-stage renal disease on hemodialysis. Kidney Int 65:1943–1946
- 50.
Yu X, Ibrahimi OA, Goetz R, Zhang F, Davis SI, Garringer HJ, Linhardt RJ, Ornitz DM, Mohammadi M, White KE (2005) Analysis of the biochemical mechanisms for the endocrine actions of fibroblast growth factor-23. Endocrinology 146:4647–4656
- 51.
Imel EA, Econs MJ (2005) Fibroblast growth factor 23: roles in health and disease. J Am Soc Nephrol 16:2565–2575
- 52.
Itoh N, Ornitz DM (2004) Evolution of the Fgf and Fgfr gene families. Trends Genet 20:563–569
- 53.
Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774
- 54.
Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, Baum MG, Schiavi S, Hu MC, Moe OW, Kuro-o M (2006) Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 281:6120–6123
- 55.
Liu S, Vierthaler L, Tang W, Zhou J, Quarles LD (2008) FGFR3 and FGFR4 do not mediate renal effects of FGF23. J Am Soc Nephrol 19:2342–2350
- 56.
Baum M, Syal A, Quigley R, Seikaly M (2006) Role of prostaglandins in the pathogenesis of X-linked hypophosphatemia. Pediatr Nephrol 21:1067–1074
- 57.
Wang H, Yoshiko Y, Yamamoto R, Minamizaki T, Kozai K, Tanne K, Aubin JE, Maeda N (2008) Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res 23:939–948
- 58.
Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, Fujita T, Nakahara K, Fukumoto S, Yamashita T (2004) FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 19:429–435
- 59.
Gupta A, Winer K, Econs MJ, Marx SJ, Collins MT (2004) FGF-23 is elevated by chronic hyperphosphatemia. J Clin Endocrinol Metab 89:4489–4492
- 60.
Ferrari SL, Bonjour JP, Rizzoli R (2005) Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab 90:1519–1524
- 61.
Larsson T, Nisbeth U, Ljunggren O, Juppner H, Jonsson KB (2003) Circulating concentration of FGF-23 increases as renal function declines in patients with chronic kidney disease, but does not change in response to variation in phosphate intake in healthy volunteers. Kidney Int 64:2272–2279
- 62.
Shigematsu T, Kazama JJ, Yamashita T, Fukumoto S, Hosoya T, Gejyo F, Fukagawa M (2004) Possible involvement of circulating fibroblast growth factor 23 in the development of secondary hyperparathyroidism associated with renal insufficiency. Am J Kidney Dis 44:250–256
- 63.
Sato T, Tominaga Y, Ueki T, Goto N, Matsuoka S, Katayama A, Haba T, Uchida K, Nakanishi S, Kazama JJ, Gejyo F, Yamashita T, Fukagawa M (2004) Total parathyroidectomy reduces elevated circulating fibroblast growth factor 23 in advanced secondary hyperparathyroidism. Am J Kidney Dis 44:481–487
- 64.
Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, Jüppner H, Wolf M (2005) Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 16:2205–2215
- 65.
Wesseling-Perry K, Pereira RC, Wang H, Elashoff RM, Sahney S, Gales B, Jüppner H, Salusky IB (2009) Relationship between plasma fibroblast growth factor-23 concentration and bone mineralization in children with renal failure on peritoneal dialysis. J Clin Endocrinol Metab 94:511–517
- 66.
Pande S, Ritter CS, Rothstein M, Wiesen K, Vassiliadis J, Kumar R, Schiavi SC, Slatapolsky E, Brown AJ (2006) FGF-23 and sFRP-4 in chronic kidney disease and post-renal transplantation. Nephron Physiol 104:p23–32
- 67.
Kawata T, Imanishi Y, Kobayashi K, Miki T, Arnold A, Inaba M, Nishizawa Y (2007) Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J Am Soc Nephrol 18:2683–2688
- 68.
Liu S, Tang W, Zhou J, Vierthaler L, Quarles LD (2007) Distinct roles for intrinsic osteocyte abnormalities and systemic factors in regulation of FGF23 and bone mineralization in Hyp mice. Am J Physiol Endocrinol Metab 293:E1636–E1644
- 69.
Calvi LM, Sims NA, Hunzelman JL, Knight MC, Giovannetti A, Saxton JM, Kronenberg HM, Baron R, Schipani E (2001) Activated parathyroid hormone/parathyroid hormone-related protein receptor in osteoblastic cells differentially affects cortical and trabecular bone. J Clin Invest 107:277–286
- 70.
Berndt T, Craig TA, Bowe AE, Vassiliadis J, Reczek D, Finnegan R, Jan De Beur SM, Schiavi SC, Kumar R (2003) Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J Clin Invest 112:785–794
- 71.
Rowe PS, de Zoysa PA, Dong R, Wang HR, White KE, Econs MJ, Oudet CL (2000) MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics 67:54–68
- 72.
Liang CT, Barnes J, Balakir R, Cheng L, Sacktor B (1982) In vitro stimulation of phosphate uptake in isolated chick renal cells by 1, 25-dihydroxycholecalciferol. Proc Natl Acad Sci USA 79:3532–3536
- 73.
Kurnik BR, Hruska KA (1984) Effects of 1, 25-dihydroxycholecalciferol on phosphate transport in vitamin D-deprived rats. Am J Physiol 247:F177–F184
- 74.
Loffing J, Lotscher M, Kaissling B, Biber J, Murer H, Seikaly M, Alpern RJ, Levi M, Baum M, Moe OW (1998) Renal Na/H exchanger NHE-3 and Na-PO4 cotransporter NaPi-2 protein expression in glucocorticoid excess and deficient states. J Am Soc Nephrol 9:1560–1567
- 75.
Falkiewicz K, Nahaczewska W, Boratynska M, Owczarek H, Klinger M, Kaminska D, Wozniak M, Szepietowski T, Patrzalek D (2003) Tacrolimus decreases tubular phosphate wasting in renal allograft recipients. Transplant Proc 35:2213–2215
- 76.
Maalouf NM, Shane E (2005) Osteoporosis after solid organ transplantation. J Clin Endocrinol Metab 90:2456–2465
- 77.
Feller RB, McDonald JA, Sherbon KJ, McCaughan GW (1999) Evidence of continuing bone recovery at a mean of 7 years after liver transplantation. Liver Transpl Surg 5:407–413
- 78.
Pichette V, Bonnardeaux A, Prudhomme L, Gagne M, Cardinal J, Ouimet D (1996) Long-term bone loss in kidney transplant recipients: a cross-sectional and longitudinal study. Am J Kidney Dis 28:105–114
- 79.
Monier-Faugere MC, Mawad H, Qi Q, Friedler RM, Malluche HH (2000) High prevalence of low bone turnover and occurrence of osteomalacia after kidney transplantation. J Am Soc Nephrol 11:1093–1099
- 80.
Carlini RG, Rojas E, Weisinger JR, Lopez M, Martinis R, Arminio A, Bellorin-Font E (2000) Bone disease in patients with long-term renal transplantation and normal renal function. Am J Kidney Dis 36:160–166
- 81.
Burckhardt P, Michel C (1989) The peak bone mass concept. Clin Rheumatol 8[Suppl 2]:16–21
- 82.
Seeman E (2003) Bone quality. Osteoporos Int 14[Suppl 5]:S3–7
Acknowledgements
The author would like to acknowledge Ms. Hadley Armstrong for her primary role in the preparation and editorial review of this manuscript.
Disclosures
The author has nothing to disclose.
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sakhaee, K. Post-renal transplantation hypophosphatemia. Pediatr Nephrol 25, 213–220 (2010). https://doi.org/10.1007/s00467-009-1252-4
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- Bone disease
- Hypophosphatemia
- Phosphorus wasting
- Post-renal transplantation