Renal agenesis and unilateral nephrectomy: what are the risks of living with a single kidney?

Abstract

The long-term outlook for patients with unilateral renal agenesis or following unilateral nephrectomy in childhood is controversial. Animal studies suggest that the resultant compensatory increase in glomerular filtration might lead to progressive damage to the remaining renal tissue and may generate hypertension. Human studies addressing these concerns are limited in number and are difficult to interpret because they are small, retrospective, or cross sectional with significant variations in duration and completeness of follow-up. The published studies suggest that renal function remains stable for several decades in the majority of subjects. The clinical significance of mild-grade proteinuria and hypertension seen in some patients is unknown. Longitudinal studies are needed to understand the long-term effect and significance of the several pathophysiological changes observed in the solitary kidney.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Simon G (1871) Chirurgie der Nieren. Thieme, Stuttgart, Germany

    Google Scholar 

  2. 2.

    Hegde S, Coulthard MG (2007) Follow-up of early unilateral nephrectomy for hypertension. Arch Dis Child Fetal Neonatal Ed 92:305–306

    Google Scholar 

  3. 3.

    Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347

    CAS  PubMed  Google Scholar 

  4. 4.

    Brenner BM, Lawler EV, Mackenzie HS (1996) The hyperfiltration theory: A paradigm shift in nephrology. Kidney Int 49:1774–1777

    CAS  Google Scholar 

  5. 5.

    Brenner BM, Mackenzie HS (1997) Nephron mass as a risk factor for progression of renal disease. Kidney Int Suppl 63:S124–S127

    CAS  PubMed  Google Scholar 

  6. 6.

    Sugino N, Duffy G, Gulyassy PF (1967) Renal function after unilateral nephrectomy in normal man. Clin Res 15:143

    Google Scholar 

  7. 7.

    Hostetter TH, Troy JL, Brenner BM (1981) Glomerular haemodynamics in experimental diabetes mellitus. Kidney Int 19:410–415

    CAS  PubMed  Google Scholar 

  8. 8.

    Brenner BM, Meyer TW, Hostetter TH (1982) Dietary protein intake and the progressive nature of kidney disease: The role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation and intrinsic renal disease. N Engl J Med 307:652–659

    CAS  PubMed  Google Scholar 

  9. 9.

    Azar S, Johnson MA, Iwai J, Bruno L, Tobian L (1978) Single-nephron dynamics in “post-salt” rats with chronic hypertension. J Lab Clin Med 91:156–166

    CAS  PubMed  Google Scholar 

  10. 10.

    Hostetter TH, Meyer TW, Rennke HG, Brenner BM (1986) Chronic effects of dietary protein in the rat with intact and reduced renal mass. Kidney Int 30:509–517

    CAS  PubMed  Google Scholar 

  11. 11.

    Meyer TW, Rennke HG (1988) Progressive glomerular injury after limited renal infarction in the rat. Am J Physiol 254:F856–F862

    CAS  PubMed  Google Scholar 

  12. 12.

    Yoshida Y, Fogo A, Ichikawa I (1989) Glomerular hemodynamic changes vs. hypertrophy in experimental glomerular sclerosis. Kidney Int 35:654–660

    CAS  Google Scholar 

  13. 13.

    Nyengaard JR, Bendtsen TF (1992) Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 232:194–201

    CAS  Google Scholar 

  14. 14.

    Schmidt K, Pesce C, Liu Q, Nelson RG, Bennett PH, Karnitschnig H, Striker LJ, Striker GE (1992) Large glomerular size in Pima Indians: lack of change with diabetic nephropathy. J Am Soc Nephrol 3:229–235

    CAS  Google Scholar 

  15. 15.

    Hoy WE, Hughson MD, Singh GR, Douglas-Denton R, Bertram JF (2006) Reduced nephron number and glomerulomegaly in Australian Aborigines: a group at high risk for renal disease and hypertension. Kidney Int 70:104–110

    CAS  Google Scholar 

  16. 16.

    Garrett PJ, Bass PS, Sandeman DD (1994) Barker, Brenner, and babies-early environment and renal disease in adulthood. J Pathol 173:299–300

    CAS  PubMed  Google Scholar 

  17. 17.

    Keller G, Zimmer G, Mall G, Ritz E, Amann K (2003) Nephron number in patients with primary hypertension. N Engl J Med 348:101–108

    Google Scholar 

  18. 18.

    Argueso LR, Ritchey ML, Boyle ET Jr, Milner DS, Bergstralh EJ, Krammer SK (1992) Prognosis of patients with unilateral renal agenesis. Pediatr Nephrol 6:412–416

    CAS  PubMed  Google Scholar 

  19. 19.

    Baudoin P, Provoost AP, Molenaar JC (1993) Renal function upto 50 years after unilateral nephrectomy in childhood. Am J Kidney Dis 21:603–611

    CAS  PubMed  Google Scholar 

  20. 20.

    Hoogenberg K, Navis G, Dullaart R (1998) Norepinephrine-induced blood pressure rise and renal vasoconstriction are not attenuated by enalapril treatment in microalbuminuric IDDM. Nephrol Dial Transplant 13:640–645

    CAS  PubMed  Google Scholar 

  21. 21.

    Woods LL, Weeks DA, Rasch R (2004) Programming of adult blood pressure by maternal protein restriction: role of nephrogenesis. Kidney Int 65:1339–1348

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    McGraw M, Poucell S, Sweet J, Baumal R (1984) The significance of focal segmental glomerulosclerosis in oligomeganephronia. Int J Pediatr Nephrol 5:67–72

    CAS  PubMed  Google Scholar 

  23. 23.

    Hall WD, Ferrario CM, Moore MA, Hall JE, Flack JM, Cooper W, Simmons JD, Egan BM, Lackland DT, Perry M Jr, Roccella EJ (1997) Hypertension-related morbidity and mortality in the southeastern United States. Am J Med Sci 313:195–209

    CAS  PubMed  Google Scholar 

  24. 24.

    Lackland DT, Bendall HE, Osmond C, Egan BM, Barker DJ (2000) Low birth weights contribute to high rates of early-onset chronic renal failure in the Southeastern United States. Arch Intern Med 160:1472–1476

    CAS  Google Scholar 

  25. 25.

    Hughson M, Farris AB III, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63:2113–2122

    Google Scholar 

  26. 26.

    Rodriguez MM, Gomez AH, Abitbol CL, Chandar JJ, Duara S, Zilleruelo GE (2004) Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol 7:17–25

    Google Scholar 

  27. 27.

    Hoy WE, Hughson MD, Bertram JF, Douglas-Denton R, Amann K (2005) Nephron number, hypertension, renal disease and renal failure. J Am Soc Nephrol 16:2557–2564

    PubMed  Google Scholar 

  28. 28.

    Kupin WL, Venkat KK, Mozes M (1993) Predictive value of the donor surface area ratio (DSA/RSA) on the outcome of primary cadaveric renal transplantation. J Am Soc Nephrol 4:945 (abstract)

    Google Scholar 

  29. 29.

    Wanner C, Luscher T, Groth H, Hauri D, Burger HR, Greminger P, Kuhlmann U, Siegenthaler W, Vetter W (1985) Unilateral parenchymatous kidney disease and hypertension: results of nephrectomy and medical treatment. Nephron 41:250–257

    CAS  PubMed  Google Scholar 

  30. 30.

    Baez-Trinidad LG, Lendvay TS, Broecker BH, Smith EA, Warshaw BL, Hymes L, Kirsch AJ (2003) Efficacy of nephrectomy for the treatment of nephrogenic hypertension in a pediatric population. J Urol 170:1655–1658

    PubMed  Google Scholar 

  31. 31.

    Johal NS, Kraklau D, Cuckow PM (2005) The role of unilateral nephrectomy in the treatment of nephrogenic hypertension in children. BJU Int 95:140–142

    PubMed  Google Scholar 

  32. 32.

    Deming C (1938) The future of unilaterally nephrectomised patient. J Urol 40:74–82

    Google Scholar 

  33. 33.

    Kretschmer HL (1943) Life after nephrectomy. JAMA 121:474–478

    Google Scholar 

  34. 34.

    Andersen B, Hansen JB, Jorgensen SJ (1968) Survival after nephrectomy. Scand J Urol Nephrol 2:91–94

    CAS  PubMed  Google Scholar 

  35. 35.

    Krohn AG, Ogden DA, Holmes JH (1966) Renal function in 29 healthy adults before and after nephrectomy. JAMA 196:322–324

    CAS  PubMed  Google Scholar 

  36. 36.

    Flanigan WJ, Burns RO, Takacs FJ, Merrill JP (1968) Serial studies of glomerular filtration rate and renal plasma flow in kidney transplant donors, identical twins, and allograft recipients. Am J Surg 116:788–794

    CAS  PubMed  Google Scholar 

  37. 37.

    Slack TK, Wilson DM (1976) Normal renal function: CIN and CPAH in healthy donors before and after nephrectomy. Mayo Clin Proc 51:296–300

    CAS  PubMed  Google Scholar 

  38. 38.

    Shimamura T, Morrison AB (1975) A progressive glomerulosclerosis occurring in partial five-sixths nephrectomized rats. Am J Pathol 79:95–106

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM (1981) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 241:F85–F93

    CAS  Google Scholar 

  40. 40.

    Woods LL, Weeks DA, Rasch R (2001) Hypertension after neonatal uninephrectomy in rats precedes glomerular damage. Hypertension 38:337–342

    CAS  PubMed  Google Scholar 

  41. 41.

    Robertson JL, Goldschmidt M, Kronfeld DS, Tomaszewski JE, Hill GS, Bovee KC (1986) Long-term renal responses to high dietary protein in dogs with 75% nephrectomy. Kidney Int 29:511–519

    CAS  PubMed  Google Scholar 

  42. 42.

    Hakim RM, Goldszer RC, Brenner BM (1984) Hypertension and proteinuria: long-term sequelae of uninephrectomy in humans. Kidney Int 25:930–936

    CAS  PubMed  Google Scholar 

  43. 43.

    Williams SL, Oler J, Jorkasky DK (1986) Long-term renal function in kidney donors: a comparison of donors and their siblings. Ann Intern Med 105:1–8

    CAS  PubMed  Google Scholar 

  44. 44.

    Oldrizzi I, Rugiu C, De Biase V, Maschio G (1991) The solitary kidney: a risky situation for progressive renal damage? Am J Kidney Dis 17(Suppl 1):57–61

    CAS  PubMed  Google Scholar 

  45. 45.

    Najarian JS, Chavers BM, McHugh LE, Matas AJ (1992) 20 years or more of follow-up of living kidney donors. Lancet 340:807–810

    CAS  PubMed  Google Scholar 

  46. 46.

    Smith S, Laprad P, Grantham J (1985) Long-term effect of uninephrectomy on serum creatinine concentration and arterial blood pressure. Am J Kidney Dis 6:143–148

    CAS  PubMed  Google Scholar 

  47. 47.

    Higashihara E, Horie S, Takeuchi T, Nutahara K, Aso Y (1990) Long-term consequence of nephrectomy. J Urol 143:239–243

    CAS  PubMed  Google Scholar 

  48. 48.

    Narkun-Burgess DM, Nolan CR, Norman JE, Page WF, Miller PL, Meyer TW (1993) Forty-five year follow-up after uninephrectomy. Kidney Int 43:1110–1115

    CAS  PubMed  Google Scholar 

  49. 49.

    Robitaille P, Mongeau J-G, Lortie L, Sinnassamy P (1985) Long-term follow-up of patients who underwent unilateral nephrectomy in childhood. Lancet 1:1297–1299

    CAS  PubMed  Google Scholar 

  50. 50.

    Wikstad I, Pettersson A, Elinder G, Sokucu S, Aperia A (1986) A comparative study of size and function of the remnant kidney in patients nephrectomised in childhood for Wilm’s tumour and hydronephrosis. Acta Paediatr Scand 75:408–414

    CAS  PubMed  Google Scholar 

  51. 51.

    Wikstad I, Celsi G, Larsson L, Herin P, Aperia A (1988) Kidney function in adults born with unilateral renal agenesis or nephrectomised in childhood. Pediatr Nephrol 2:177–182

    CAS  PubMed  Google Scholar 

  52. 52.

    Argueso L, Ritchey M, Boyle E, Milliner DS, Bergstralh EJ, Krammer SA (1992) Prognosis of children with solitary kidney after unilateral nephrectomy. J Urol 148:747–751

    CAS  PubMed  Google Scholar 

  53. 53.

    Provoost AP, Brenner BM (1993) Long-term follow-up of humans with single kidneys: the need for longitudinal studies to assess true changes in renal function. Curr Opin Nephrol Hypertens 2:521–526

    CAS  PubMed  Google Scholar 

  54. 54.

    Acharya DU, Heber ME, Doré CJ, Raftery EB (1996) Ambulatory intraarterial blood pressure in essential hypertension. Effects of age, sex, race, and body mass—the Northwick Park Hospital Database Study. Am J Hypertens 9:943–952

    CAS  PubMed  Google Scholar 

  55. 55.

    Rowe JW, Andres R, Tobin JD, Norris AH, Shock NW (1976) The effect of age on creatinine clearance in man: a cross sectional and longitudinal study. J Gerontol 31:155

    CAS  PubMed  Google Scholar 

  56. 56.

    Fliser D, Franek E, Joest M, Block S, Mutschler E, Ritz E (1997) Renal function in the elderly: impact of hypertension and cardiac function. Kidney Int 51:1196–1204

    CAS  PubMed  Google Scholar 

  57. 57.

    Kaufman JM, Dimeola HJ, Siegel NJ, Lytton B, Kashgarian M, Hayslett JP (1974) Compensatory adaptation of structure and function following progressive renal ablation. Kidney Int 6:10–17

    CAS  PubMed  Google Scholar 

  58. 58.

    Kaufman JM, Siegel NJ, Hayslett JP (1975) Functional and hemodynamic adaptation to progressive renal ablation. Circ Res 36:286–293

    CAS  PubMed  Google Scholar 

  59. 59.

    Larsson L, Aperia A, Wilton P (1980) Effect of normal development on compensatory renal growth. Kidney Int 18:29–35

    CAS  PubMed  Google Scholar 

  60. 60.

    Hayslett JP (1983) Effect of age on compensatory renal growth. Kidney Int 23:599–602

    CAS  PubMed  Google Scholar 

  61. 61.

    Olson JL, Hostetter TH, Rennke HG, Brenner BM, Venkatachalam MA (1982) Altered glomerular permselectivity and progressive sclerosis following extreme ablation of renal mass. Kidney Int 22:112–126

    CAS  PubMed  Google Scholar 

  62. 62.

    Myer TW, Hostetter TH, Rennke HG, Noddin JL, Brenner BM (1983) Preservation of renal structure and function by long-term protein restriction in rats with reduced nephron mass. Kidney Int 23:218 (abstract)

    Google Scholar 

  63. 63.

    Provoost AP, De Keijzer MH, Molenaar JC (1989) Effects of protein intake on lifelong changes in renal function of rats unilaterally nephrectomised at young age. J Lab Clin Med 114:19–26

    CAS  PubMed  Google Scholar 

  64. 64.

    Okuda S, Motomura K, Sanai T, Onoyama K, Fujishima M (1988) High incidence of glomerular sclerosis in rats subjected to uninephrectomy at young age. Nephron 49:240–244

    CAS  PubMed  Google Scholar 

  65. 65.

    Anderson S, Meyer TW, Brenner BM (1985) The role of haemodynamic factors in the initiation and progression of renal disease. J Urol 133:363–368

    CAS  PubMed  Google Scholar 

  66. 66.

    Remuzzi G, Ruggenenti P, Benigni A (1997) Understanding the nature of renal disease progression. Kidney Int 51:2–15

    CAS  Google Scholar 

  67. 67.

    Dinkel E, Britscho J, Dittrich M, Schulte-Wissermann H, Ertel M (1988) Renal growth in patients nephrectomized for Wilms tumour as compared to renal agenesis. Eur J Pediatr 147:54–58

    CAS  PubMed  Google Scholar 

  68. 68.

    Ogden D (1967) Donor and recipient function 2 to 4 years after renal homotransplantations. A paired study of 28 cases. Ann Intern Med 67:998–1006

    CAS  PubMed  Google Scholar 

  69. 69.

    Woods LL (1999) Neonatal uninephrectomy causes hypertension in adult rats. Am J Physiol 276:R974–R978

    CAS  PubMed  Google Scholar 

  70. 70.

    Moritz KM, Wintour EM, Dodic M (2002) Fetal uninephrectomy leads to postnatal hypertension and compromised renal function. Hypertension 39:1071–1076

    CAS  PubMed  Google Scholar 

  71. 71.

    Thorner PS, Arbus GS, Celermajer DS, Baumal R (1984) Focal segmental glomerulosclerosis and progressive renal failure associated with a unilateral kidney. Pediatrics 73:806–810

    CAS  PubMed  Google Scholar 

  72. 72.

    Zucchelli P, Cagnoli L, Casanova S, Donini U, Pasquali S (1983) Focal glomerulosclerosis in patients with unilateral nephrectomy. Kidney Int 24:649–655

    CAS  PubMed  Google Scholar 

  73. 73.

    Fehrman-Ekholm I, Elinder CG, Stenbeck M, Tyden G, Groth CG (1997) Kidney donors live longer. Transplantation 64:976–978

    CAS  Google Scholar 

  74. 74.

    Sommerer C, Morath C, Andrassy J, Zeier M (2004) The long-term consequences of living- related or unrelated kidney donation. Nephrol Dial Transplant 19(Suppl 4):iv45–iv47

    PubMed  Google Scholar 

  75. 75.

    Kasiske BL, Ma JZ, Louis TA, Swan SK (1995) Long-term effects of reduced renal mass in humans. Kidney Int 48:814–819

    CAS  PubMed  Google Scholar 

  76. 76.

    Ellison MD, McBride MA, Taranto SE, Delmonico FL, Kauffman HM (2002) Living kidney donors in need of kidney transplants: a report from the organ procurement and transplantation network. Transplantation 74:1349–1351

    PubMed  Google Scholar 

  77. 77.

    Grossman J, Wilhelm A, Kachel HG, Geiger H (2002) Near complete follow up of living kidney donors at a single center. J Am Soc Nephrol 13:11A

    Google Scholar 

  78. 78.

    Fehrman-Ekholm I, Duner F, Brink B, Tyden G, Elinder CG (2001) No evidence of accelerated loss of kidney function in living kidney donors: results from a cross-sectional follow-up. Transplantation 72:444–449

    CAS  PubMed  Google Scholar 

  79. 79.

    Talseth T, Fauchald P, Skrede S, Djoseland O, Berg KJ, Stenstrom J, Heilo A, Brodwall EK, Flatmark A (1986) Long-term blood pressure and renal function in kidney donors. Kidney Int 29:1072–1076

    CAS  PubMed  Google Scholar 

  80. 80.

    Bay WH, Hebert LA (1987) The living donor in kidney transplantation. Ann Intern Med 106:719–727

    CAS  PubMed  Google Scholar 

  81. 81.

    Steckler RE, Reihle RA, Vaughan ED (1990) Hyperfiltration- induced renal injury in normal man: myth or reality. J Urol 144:1323–1327

    CAS  PubMed  Google Scholar 

  82. 82.

    Boudville N, Prasad GV, Knoll G, Muirhead N, Thiessen-Philbrook H, Yang R, Rosas-Arellano MP, Housawi A, Garg AX (2006) Meta-analysis: risk for hypertension in living kidney donors. Ann Intern Med 145:185–196

    PubMed  Google Scholar 

  83. 83.

    Simon J, Zamora I, Mendizabal S, Castel V, Lurbe A (1982) Glomerulotubular balance and functional compensation in nephrectomized children. Nephron 31:203–208

    CAS  PubMed  Google Scholar 

  84. 84.

    Ramcharan T, Matas AJ (2002) Long-term (20–37 years) follow-up of living kidney donors. Am J Transplant 2:959–964

    PubMed  Google Scholar 

  85. 85.

    Lam JP, MacKinlay GA, Munro FD, Aldridge LM (2006) Endoscopic nephrectomy in children: is retro the way forward? J Laparoendosc Adv Surg Tech A 16:59–62

    PubMed  Google Scholar 

  86. 86.

    Kobashi KC, Chamberlin DA, Rajpoot D, Shanberg AM (1998) Retroperitoneal laparoscopic nephrectomy in children. J Urol 160:1142–1144

    CAS  PubMed  Google Scholar 

  87. 87.

    Beisland C, Medby PC, Sander S, Beisland HO (2000) Nephrectomy - indications, complications and postoperative mortality in 646 consecutive patients. Eur Urol 37:58–64

    CAS  PubMed  Google Scholar 

  88. 88.

    Ciszek M, Paczek L, Rowiński W (2003) Clinical outcome of living kidney donation. Transplant Proc 35:1179–1181

    CAS  PubMed  Google Scholar 

  89. 89.

    Novick AC, Gephardt G, Guz B, Steinmuller D, Tubbs R (1991) Long-term follow-up after partial removal of a solitary kidney. N Engl J Med 325:1058–1062

    CAS  PubMed  Google Scholar 

  90. 90.

    Reyes L, Mañalich R (2005) Long-term consequences of low birth weight. Kidney Int 68:S107–S111

    Google Scholar 

  91. 91.

    The Modification of Diet in Renal Disease Study (1992) The modification of diet in renal disease study: design, methods, and results from the feasibility study. Am J Kidney Dis 20:18–33

    Google Scholar 

  92. 92.

    Tomson C, Udayaraj U (2007) Management of chronic kidney disease. Medicine (Baltimore) 35:442–446

    Google Scholar 

  93. 93.

    Ruggenenti P, Perna A, Benini R, Bertani T, Zoccali C, Maggiore Q, Salvadori M, Remuzzi G (1999) In chronic nephropathies prolonged ACE inhibition can induce remission: dynamics of time-dependent changes in GFR. Investigators of the GISEN Group. Gruppo Italiano Studi Epidemiologici in Nefrologia. J Am Soc Nephrol 10:997–1006

    CAS  PubMed  Google Scholar 

  94. 94.

    Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, Remuzzi G, Snapinn SM, Zhang Z, Shahinfar S (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345:861–869

    CAS  Google Scholar 

  95. 95.

    Dworkin LD (1991) Effects of calcium antagonists on glomerular hemodynamics and structure in experimental hypertension. Am J Kidney Dis 17(Suppl 1):89–93

    CAS  PubMed  Google Scholar 

  96. 96.

    Fogo A, Kon V (1996) Treatment of hypertension. Semin Nephrol 16:555–566

    CAS  PubMed  Google Scholar 

  97. 97.

    Fried LF, Forrest KY, Ellis D, Chang Y, Silvers N, Orchard TJ (2001) Lipid modulation in insulin-dependent diabetes mellitus: effect on microvascular outcomes. J Diabetes Complications 15:113–119

    CAS  PubMed  Google Scholar 

  98. 98.

    Henegar JR, Bigler SA, Henegar LK, Tyagi SC, Hall JE (2001) Functional and structural changes in the kidney in the early stages of obesity. J Am Soc Nephrol 12:1211–1217

    CAS  PubMed  Google Scholar 

  99. 99.

    Vallon V, Blantz RC, Thomson S (2003) Glomerular hyperfiltration and the salt paradox in early type 1 diabetes mellitus: a tubulo-centric view. J Am Soc Nephrol 14:530–537

    PubMed  Google Scholar 

  100. 100.

    Orth SR, Stöckmann A, Conradt C, Ritz E, Ferro M, Kreusser W, Piccoli G, Rambausek M, Roccatello D, Schäfer K, Sieberth HG, Wanner C, Watschinger B, Zucchelli P (1998) Smoking as a risk factor for end-stage renal failure in men with primary renal disease. Kidney Int 54:926–931

    CAS  PubMed  Google Scholar 

  101. 101.

    Praga M, Hernández E, Herrero JC, Morales E, Revilla Y, Díaz-González R, Rodicio JL (2000) Influence of obesity on the appearance of proteinuria and renal insufficiency after unilateral nephrectomy. Kidney Int 58:2111–2118

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shivaram Hegde.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hegde, S., Coulthard, M.G. Renal agenesis and unilateral nephrectomy: what are the risks of living with a single kidney?. Pediatr Nephrol 24, 439–446 (2009). https://doi.org/10.1007/s00467-008-0924-9

Download citation

Keywords

  • Unilateral nephrectomy
  • Hypertension
  • Proteinuria
  • Renal agenesis