Abstract
Homogenization theory forms the basis for solving the topology optimization problem (TOP) formulated for designing composite materials. Homogenization is proved to be an efficient approach to effectively determine the equivalent macroscopic properties of the composite material. It relies on the assumption that the composite material presents a periodic pattern on a microstructural level; the simplest repeating unit of the microstructure, that if isolated represents exactly the macroscopic behaviour of the material, is called the \(unit\ cell\). Scope of homogenization is to determine the macroscopic (or else effective) properties of the non-homogeneous unit cell, that is, determine the properties of the unit cell as if it was composed by homogeneous material. In this study, a simple methodology is proposed where homogenization is implemented on a 3D lattice unit cell, with its radius being considered as the alternating parameter for the homogenization procedure; different values of the radius result to different unit cell configurations and hence, to different equivalent properties. A fitting process takes place in order to appropriately model the variations of the obtained effective properties w.r.t the design parameter. The corresponding, homogenization-based TOP is formed and the accuracy of the proposed methodology is assessed on several case studies.
This is a preview of subscription content, access via your institution.


















References
- 1.
Lagaros ND (2018) The environmental and economic impact of structural optimization. Struct Multidiscip Optim 58(4):1751–1768. https://doi.org/10.1007/s00158-018-1998-z
- 2.
Kanellopoulos I, Sotiropoulos S, Kazakis G, Lagaros ND (2017) Topology optimization aided structural design: interpretation, computational aspects and 3d printing. Heliyon. https://doi.org/10.1016/j.heliyon.2017.e00431
- 3.
Sotiropoulos S, Kazakis G, Lagaros ND (2020) Conceptual design of structural systems based on topology optimization and prefabricated components. Comput Struct. https://doi.org/10.1016/j.compstruc.2019.106136
- 4.
Christensen PW, Klarbring A (2009) An introduction to structural optimization, volume 153 of Solid mechanics and its applications. Springer, Netherlands. ISBN 978-1-4020-8665-6. https://doi.org/10.1007/978-1-4020-8666-3
- 5.
Bendsøe MP, Lund E, Olhoff N, Sigmund O (2005) Topology optimization-broadening the areas of application. Control Cybern 34:7–35
- 6.
Sigmund O(2019) Topology optimization state-of-the-art and future perspective, (last accessed November ). https://goo.gl/PCqrgk
- 7.
Paulino GH (2013) Where are we in topology optimization? In: 10th World Congress on structural and multidisciplinary optimization. Orlando, FL, USA
- 8.
Rozvany GIN, Olhoff N (2001) Topology optimization of structures and composite continua, vol 7, 1st edn. Nato Science Series II. Springer, Dordrecht
- 9.
Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscip Optim 1(4):193–202. https://doi.org/10.1007/BF01650949
- 10.
Zhou M, Rozvany GIN (1991) The coc algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336. https://doi.org/10.1016/0045-7825(91)90046-9
- 11.
Mlejnek HP (1992) Some aspects of the genesis of structures. Struct Multidiscip Optim 5(1–2):64–69. https://doi.org/10.1007/BF01744697
- 12.
Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246. https://doi.org/10.1016/S0045-7825(02)00559-5
- 13.
Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and level-set method. J Comput Phys 194:363–393. https://doi.org/10.1016/j.jcp.2003.09.032
- 14.
Xie Y, Steven GP(1992) Shape and layout optimization via an evolutionary procedure. In: Proceedings of the international conference computational engineering science, volume 194. Hong Kong University, Hong Kong, 17–22 December, p 363
- 15.
Xie Y, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896. https://doi.org/10.1016/0045-7949(93)90035-C
- 16.
Querin OM, Steven GP, Xie YM (1998) Evolutionary structural optimization using a bidirectional algorithm. Eng Comput 15(8):1031–1048. https://doi.org/10.1108/02644409810244129
- 17.
Fujii D, Chen BC, Kikuchi N (2001) Composite material design of two-dimensional structures using the homogenization design method. Int J Numer Meth Eng 50:2031–2051. https://doi.org/10.1002/nme.105
- 18.
Liu L, Yan J, Cheng G (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86:1417–1425. https://doi.org/10.1016/j.compstruc.2007.04.030
- 19.
Wang Y, Wang MY, Chen F (2016) Structure-material integrated design by level sets. Struct Multidiscip Optim 54:1145–1156. https://doi.org/10.1007/s00158-016-1430-5
- 20.
Chen W, Tong L, Liu S (2017) Concurrent topology design of structure and material using a two-scale topology optimization. Comput Struct 178:119–128. https://doi.org/10.1016/j.compstruc.2016.10.013
- 21.
Rodrigues H, Guedes J, Bendsøe MP (2002) Hierachical optimization of material and structure. Struct Multidiscip Optim 24(1):1–10. https://doi.org/10.1007/s00158-002-0209-z
- 22.
Lazarov B(2013) Topology optimization using multiscale finite element method for high-contrast media. In: International conference on large-scale scientific computing-LSSC 2013, Sozopol, Bulgaria
- 23.
Alexandersen J, Lazarov B (2015) Topology optimization of manufacturable microstructural details without length scale separation using a spectral coarse basis precoditioner. Comput Methods Appl Mech Eng 290:156–182. https://doi.org/10.1016/j.cma.2015.02.028
- 24.
Pantz O, Trabelsi K (2008) A post-treatment of the homogenization method for shape optimization. SIAM J Control Optim 47(3):1380–1398. https://doi.org/10.1137/070688900
- 25.
Pantz O, Trabelsi K(2010) Construction of minimization sequences for shape optimization. In: 15th International conference on methods and models in automation and robotics, Miedzyzdroje, Poland, pp 278–283. https://doi.org/10.1109/MMAR.2010.5587222
- 26.
Groen JP, Sigmund O (2018) Homogenization-based topology optimization for high-resolution manufacturable microstructures. Int J Numer Methods Eng. https://doi.org/10.1002/nme.5575
- 27.
Westermann N, Sigmund R, Wu O, Aage J (2018) Infill optimization for additive manufacturing-approaching bone-like porous structures. IEE Trans Visual Comput Graph. https://doi.org/10.1109/TVCG.2017.2655523
- 28.
Sigmund J, Groen O, Wu JP (2019) Homogenization-based stiffness optimization and projection of 2d coated structures with orthotropic infill. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2019.02.031
- 29.
Pantz G, Geoffroy-Bonders O, Allaire P (2020) 3-d topology optimization of modulated ad oriented periodic microstructures by the homogenization method. J Comput Phys. https://doi.org/10.1016/j.jcp.2019.108994
- 30.
Cheng X, Yan G, Guo J (2016) Multi-scale concurrent material and structural design under mechanical and thermal loads. Comput Mech. https://doi.org/10.1007/s00466-015-1255-x
- 31.
Shukla A, Misra A (2013) Review of optimality criterion approach scope, limitation and development in topology optimization. Int J Adv Eng Technol 6(4):1886–1889
- 32.
Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Meth Eng 24(2):359–373. https://doi.org/10.1002/nme.1620240207
- 33.
Bendsøe MP, Sigmund O (2004) Topology optimization: theory, 2nd edn. Methods and applications. Springer, Berlin Heidelberg. ISBN 978-3-540-42992-0. https://doi.org/10.1007/978-3-662-05086-6
- 34.
Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic analysis for periodic structures, vol 7, 1st edn. North Holland, New York. ISBN 978-0-8218-5324-5
- 35.
Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224. https://doi.org/10.1016/0045-7825(88)90086-2
- 36.
Hassani B, Hinton E (1998) A review of homogenization and topology optimization i-homogenization theory for media with periodic structure. Comput Struct 69(6):707–717. https://doi.org/10.1016/S0045-7949(98)00131-X
- 37.
Hassani B, Hinton E (1998) A review of homogenization and topology optimization ii analytical and numerical solution of homogenization equations. Comput Struct 69(6):719–738. https://doi.org/10.1016/S0045-7949(98)00132-1
- 38.
Hassani B, Hinton E (1998) A review of homogenization and topology optimization i-topology optimization using optimality criteria. Comput Struct 69(6):739–756. https://doi.org/10.1016/S0045-7949(98)00133-3
- 39.
Groen J, Stutz F, Aage N , Bærentzen JA, Sigmund O. De-homogenization of optimal multi-scale 3d topologies. https://arxiv.org/abs/1910.13002
- 40.
Gao J, Luo Z, Xia L, Gao L (2019) Concurrent topology optimization of multiscale composite structures in matlab. Struct Multidiscip Optim 60:2621–2651. https://doi.org/10.1007/s00158-019-02323-6
- 41.
Allaire G, Geoffroy-Donders P, Pantz O (2019) Topology optimization of modulated and oriented periodic microstructures by the homogenization method. Comput Math Appl 78(7):2197–2229. https://doi.org/10.1016/j.camwa.2018.08.007
- 42.
Groen JP, Wu J, Sigmund O (2019) Homogenization-based stiffness optimization and projection of 2d coated structures with orthotropic infill. Comput Methods Appl Mech Eng 349:722–742. https://doi.org/10.1016/j.cma.2019.02.031
- 43.
Monteiro A (2017) Topology optimization of microstructures with constraints on average stress and material properties. Master’s thesis, Instituto Superior Técnico, Universidade de Lisboa, Portugal
- 44.
Wu J, Wang W, Gao X (2019) Design and optimization of conforming lattice structures. IEEE Trans Visual Comput Graph. https://doi.org/10.1109/TVCG.2019.2938946
- 45.
Andreassen E, Andreasen CS (2014) How to determine composite material properties using numerical homogenization. Comput Mater Sci 83:488–495. https://doi.org/10.1016/j.commatsci.2013.09.006
- 46.
Guoying D, Yunlong T, Yaoyao FZ (2018) A 149 line homogenization code for three-dimensional cellular materials written in matlab. J Eng Mater Technol 141(1):488–495. https://doi.org/10.1115/1.4040555
- 47.
Liu K, Tovar A (2014) An efficient 3d topology optimization code written in matlab. Struct Multidiscip Optim 50(6):1175–1196. https://doi.org/10.1007/s00158-014-1107-x
- 48.
Gill P, Murray W, Saunders M (2002) SNOPT: an SQP algorithm for large-scale constrained optimization. Soc Ind Appl Math 12(4):979–1006
- 49.
Bourdin B (2001) Filters in topology optimization. Int J Numer Meth Eng 50(9):2143–2158. https://doi.org/10.1002/nme.116
- 50.
Pedersen CG, Lund JJ, Damkilde L, Kristensen AS (2006) Topology optimization—improved checker-board filtering with sharp contours. In: Proceedings of the 19th nordic seminar on computational mechanics, Lund, Sweden, 20–21 October, p 182
- 51.
Wang SY, Lim KM, Khoo BC, Wang MY (2008) A hybrid sensitivity filtering for topology optimization. Comput Model Eng Sci 24(1):21–50. https://doi.org/10.3970/cmes.2008.024.021
- 52.
Sigmund O (2001) A 99 line topology optimization code written in matlab. Struct Multidiscip Optim 21(2):120–127. https://doi.org/10.1007/s001580050176
- 53.
Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in matlab using 88 lines of code. Struct Multidiscip Optim 43(1):1–16. https://doi.org/10.1007/s00158-010-0594-7
Acknowledgements
This research has been co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call \({\textit{RESEARCH}}-{\textit{CREATE}}-{\textit{INNOVATE}}\) (project code: T1EDK-05603). Konstantinos Iason Ypsilantis acknowledges the support of the Research Foundation Flanders (FWO) under grant number 1SA8721N.
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ypsilantis, KI., Kazakis, G. & Lagaros, N.D. An efficient 3D homogenization-based topology optimization methodology. Comput Mech (2021). https://doi.org/10.1007/s00466-020-01943-w
Received:
Accepted:
Published:
Keywords
- Design of composite materials
- Topology optimization
- Homogenization approach
- 3D lattice unit cell
- Fitting process