A solid–shell formulation based on the assumed natural inhomogeneous strains for modeling the viscoelastic response of electro-active polymers

Abstract

In this paper, an advanced low-order solid–shell formulation is presented for modeling electro-active polymers (EAPs). This advanced finite element is of great importance due to the fact that EAPs actuators are typically designed as shell-like formations, in which the application of standard finite element formulation will lead to various locking pathologies (e.g. shear locking, trapezoidal locking, volumetric locking, etc.). Thus, for alleviating the various locking pathologies, both the assumed natural inhomogeneous strains (ANIS) and the enhanced assumed strain (EAS) methods are adopted for modifying the strain measure. Within the modified kinematics, a strain energy function that accounts for the elastic and the viscoelastic response as well as the electromechanical coupling is adopted. The developed formulation is implemented in the finite-element software Abaqus for further numerical applications, in which the developed ANIS solid–shell is compared with the classical assumed natural strains solid–shell and the mixed finite element formulation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

References

  1. 1.

    Abed-Meraim F, Combescure A (2009) An improved assumed strain solid–shell element formulation with physical stabilization for geometric non-linear applications and elastic-plastic stability analysis. Int J Numer Methods Eng 80:1640–1686

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Andelfinger U, Ramm E (1993) EAS-elements for two-dimensional, three-dimensional, plate and shell structures and their equivalence to HR-elements. Int J Numer Methods Eng 36(8):1311–1337

    MATH  Article  Google Scholar 

  3. 3.

    Ask A, Menzel A, Ristinmaa M (2013) Inverse-motion-based form finding for quasi-incompressible finite electroelasticity. Int J Numer Methods Eng 94(6):554–572

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Ausserer M, Lee S (1988) An eighteen node solid element for thin shell analysis. Int J Numer Methods Eng 26:1345–1364

    MATH  Article  Google Scholar 

  5. 5.

    Bar-Cohen Y (2001) Electroactive polymers as artificial muscles-reality and challenges, 1st edn. SPIE press, Bellingham

    Google Scholar 

  6. 6.

    Batoz J, Dhatt G (1972) Development of two simple shell elements. AIAAJ 10:237–238

    Article  Google Scholar 

  7. 7.

    Betch P, Stein E (1997) An assumed strain approach avoiding artificial thickness straining for a nonlinear 4-node shell element. Comp Methods Appl Mech Eng 11:899–909

    Google Scholar 

  8. 8.

    Bischoff M (2008) Modeling of shells with three-dimensional finite elements. In: 6th international conference on computation of shell & spatial structures (May), vol, 81

  9. 9.

    Bischoff M, Ramm E (1997) Shear deformable shell elements for large strains and rotations. Int J Numer Methods Eng 40:445–452

    MATH  Article  Google Scholar 

  10. 10.

    Bishara D, Jabareen M (2019) A reduced mixed finite-element formulation for modeling the viscoelastic response of electro-active polymers at finite deformation. Math Mech Solids 24(5):1578–1610

    MathSciNet  Article  Google Scholar 

  11. 11.

    Bishara D, Jabareen M (2020) Does the classical solid–shell element with the assumed natural strain method satisfy the three-dimensional patch test for arbitrary geometry? Finite Elem Anal Des 168:103331

    MathSciNet  Article  Google Scholar 

  12. 12.

    Blok J, Legrand D (1969) Dielectric breakdown of polymer films. J Appl Phys 40(1):288–293

    Article  Google Scholar 

  13. 13.

    Braess D (1998) Enhanced assumed strain elements and locking in membrane problems. Comput Methods Appl Mech Eng 165:155–174

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Büchter N, Ramm E, Roehl D (1994) Three-dimensional extension of non-linear shell formulation based on the enhanced assumed strain concept. Int J Numer Methods Eng 37(15):2551–2568

    MATH  Article  Google Scholar 

  15. 15.

    Cardoso R, Yoon J, Mahardika M, Choudhry S, Alves de Sousa R, Valente R (2008) Enhanced assumed strain (EAS) and assumed natural strain (ANS) methods for one-point quadrature solid–shell elements. Int J Numer Meth Eng 75:156–187

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Carpi F, Menon C, De Rossi D (2009) Electroactive elastomeric actuator for all-polymer linear peristaltic pumps. IEEE/ASME Trans Mechatron 15(3):460–470

    Article  Google Scholar 

  17. 17.

    Caseiro J, Valente R, Reali A, Kiendl J, Auricchio F, Alves De Sousa R (2014) On the assumed natural strain method to alleviate locking in solid–shell NURBS-based finite elements. Comput Mech 53(6):341–1353

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Chapelle D, Bathe K (1998) Fundamental considerations for the finite element analysis of shell structures. Comput Struct 66(1):19–36

    MATH  Article  Google Scholar 

  19. 19.

    Coleman B, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13:167–178

    MathSciNet  MATH  Article  Google Scholar 

  20. 20.

    Gil A, Ortigosa R (2016) A new framework for large strain electromechanics based on convex multi-variable strain energies: variational formulation and material characterisation. Comput Methods Appl Mech Eng 302:293–328

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Green M, Tobolsky A (1946) A new approach to the theory of relaxing polymeric media. J Chem Phys 14:80–92

    Article  Google Scholar 

  22. 22.

    Hauptmann R, Schweizerhof K (1998) A systematic development of ’solid–shell’ formulations for linear and non-linear analysis employing only displacement degrees of freedom. Int J Numer Methods Eng 42:49–69

    MATH  Article  Google Scholar 

  23. 23.

    Hauptmann R, Schweizerhof K, Doll S (2000) Extension of the ‘solid–shell’ concept for application to large elastic and large elastoplastic deformations. Int J Numer Methods Eng 49:1121–1141

    MATH  Article  Google Scholar 

  24. 24.

    Jabareen M, Mtanes E (2016) A solid–shell Cosserat point element (SSCPE) for elastic thin structures at finite deformation. Comput Mech 2:1–31

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Jordi C, Michel S, Fink E (2010) Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators. Bioinspir biomim 5(2):026,007

    Article  Google Scholar 

  26. 26.

    Klinkel S, Wagner W (2006) A geometrically non-linear piezoelectric solid shell element based on a mixed multi-field variational formulation. IInt J Numer Methods Eng 65:349–382

    MATH  Article  Google Scholar 

  27. 27.

    Klinkel S, Zwecker S, Müller R (2013) A Solid Shell Finite Element Formulation for Dielectric Elastomers. J Appl Mech 80(2):021,026

    Article  Google Scholar 

  28. 28.

    Kornbluh R, Pelrine R, Gallagher P, Eckerle J, Czyzyk D, Shastri S, Pei Q (2003) Electroactive polymer animated devices. US Patent 6,586,859

  29. 29.

    Lee S, Goo N, Park H, Yoon K, Cho C (2003) A nine-node assumed strain shell element for analysis of a coupled electro-mechanical system. Smart Mater Struct 12:355–362

    Article  Google Scholar 

  30. 30.

    Lin-Quan Y, Li L (2005) An electric node concept for solid–shell elements for laminate composite piezoelectric structures. J Appl Mech 72:35–43

    MATH  Article  Google Scholar 

  31. 31.

    Lochmatter P (2007) Development of a shell-like electroactive polymer (eap) actuator. Ph.D. thesis, Swiss Federal Institute of Technology Zurich

  32. 32.

    Lubliner J (1985) A model of rubber viscoelasticity. Mech Res Commun 12:93–99

    Article  Google Scholar 

  33. 33.

    MacNeal R (1989) Toward a defect free four-noded membrane element. Finite Elem Anal Des 5:31–37

    Article  Google Scholar 

  34. 34.

    Mostafa M, Sivaselvan M, Felippa C (2013) A solid–shell corotational element based on ANDES, ANS and EAS for geometrically nonlinear structural analysis. Int J Numer Methods Eng 95:145–180

    MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Ortigosa R, Gil A (2016) A new framework for large strain electromechanics based on convex multi-variable strain energies: conservation laws, hyperbolicity and extension to electro-magneto-mechanics. Comput Methods Appl Mech Eng 309:202–242

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Ortigosa R, Gil A (2016) A new framework for large strain electromechanics based on convex multi-variable strain energies: finite element discretisation and computational implementation. Comput Methods Appl Mech Eng 302:329–360

    MathSciNet  MATH  Article  Google Scholar 

  37. 37.

    Ortigosa R, Gil A (2017) A computational framework for incompressible electromechanics based on convex multi-variable strain energies for geometrically exact shell theory. Comput Methods Appl Mech Eng 317:792–816

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Ortigosa R, Gil A, Lee C (2016) A computational framework for large strain nearly and truly incompressible electromechanics based on convex multi-variable strain energies. Comput Methods Appl Mech Eng 310:297–334

    MathSciNet  MATH  Article  Google Scholar 

  39. 39.

    Parish H (1995) A continuum-based shell theory for nonlinear application. Int J Numer Methods Eng 38:1855–1883

    Article  Google Scholar 

  40. 40.

    Park H, Cho C, Lee S (1995) An efficient assumed strain element model with six dof per node for geometrically nonlinear shells. Int J Numer Methods Eng 38:4101–4122

    MATH  Article  Google Scholar 

  41. 41.

    Quak W (2007) A solid–shell element for use in sheet deformation processes and the EAS method. Master’s thesis, Mechanics of Forming Processes, Department of Mechanical Engineering University of Twente

  42. 42.

    Rah K, Van Paepegem W, Habraken A, Degrieck J, Alves de Sousa R, Valente R (2013) Optimal low-order fully integrated solid–shell elements. Comput Mech 51:309–326

    MathSciNet  MATH  Article  Google Scholar 

  43. 43.

    Schwarze M, Reese S (2009) A reduced integration solid–shell element based on the EAS and the ANS concept—geometrically linear problems. Int J Numer Methods Eng 80:1322–1355

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Schwarze M, Reese S (2011) A reduced integration solid–shell finite element based on the EAS and the ANS concept large deformation problems. Int J Numer Meth Eng 85:289–329

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Senders C, Tollefson T (2010) Electroactive polymer actuation of implants. US Patent App. 12/733,077

  46. 46.

    Simo J, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Meth Eng 33:1413–1449

    MATH  Article  Google Scholar 

  47. 47.

    Simo J, Rifai M (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Swayze J, Ortiz M (2008) Electroactive polymer-based pump. US Patent 7,353,747

  49. 49.

    Sze K, Ghali A (1993) A hexahedral element for plates, shells and beam by selective scaling. Int J Numer Methods Eng 36:1519–1540

    MATH  Article  Google Scholar 

  50. 50.

    Sze K, Tay M (1997) An explicit hybrid-stabilized eighteen node solid element for thin shell analysis. Int J Numer Methods Eng 40:1839–1856

    Article  Google Scholar 

  51. 51.

    Sze K, Zhu D (1999) An quadratic assumed natural strain curved triangular shell element. Comput Methods Appl Mech Eng 174:57–71

    MATH  Article  Google Scholar 

  52. 52.

    Valente R, Alves De Sousa R, Natal-Jorge R (2004) An enhanced strain 3D element for large deformation elastoplastic thin-shell applications. Comput Mech 34:38–52

    MATH  Article  Google Scholar 

  53. 53.

    Wissler M, Mazza E (2005) Modeling of a pre-strained circular actuator made of dielectric elastomers. Sens Actuators A 120:184–192

    Article  Google Scholar 

  54. 54.

    Wissler M, Mazza E (2007) Mechanical behavior of an acrylic elastomer used in dielectric elastomer actuators. Sens Actuators A Phys 134(2):494–504

    Article  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the Israel Science Foundation under Grant 1713/13, which is gratefully acknowledged. Also, M. Jabareen is supported by Neubauer Foundation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahmood Jabareen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: details on the transformation matrices \(\underline{\underline{\mathbf {T}}}\) and \(\widetilde{\widetilde{\underline{\underline{\mathbf {T}}}}}\), and the interpolation matrix \(\underline{\underline{\mathbf {M}}}\)

The matrix \(\underline{\underline{\mathbf {T}}}\) in (53) is a \(6 \times 6\) transformation matrix with entries \(T_{i}^{j}=\mathbf {e}_{i}\cdot \mathbf {G}^{j}\) and it is reported by

$$\begin{aligned} \begin{aligned}&\underline{\underline{\mathbf {T}}}=\left[ \begin{array}{l l l} T_{1}^{1}T_{1}^{1} &{} \quad T_{1}^{2}T_{1}^{2} &{} \quad T_{1}^{3}T_{1}^{3}\\ T_{2}^{1}T_{2}^{1} &{} \quad T_{2}^{2}T_{2}^{2} &{} \quad T_{2}^{3}T_{2}^{3}\\ T_{3}^{1}T_{3}^{1} &{} \quad T_{3}^{2}T_{3}^{2} &{} \quad T_{3}^{3}T_{3}^{3}\\ 2T_{1}^{1}T_{2}^{1} &{} \quad 2T_{1}^{2}T_{2}^{2} &{} \quad 2T_{1}^{3}T_{2}^{3}\\ 2T_{1}^{1}T_{3}^{1} &{} \quad 2T_{1}^{2}T_{3}^{2} &{} \quad 2T_{1}^{3}T_{3}^{3}\\ 2T_{2}^{1}T_{3}^{1} &{} \quad 2T_{2}^{2}T_{3}^{2} &{} \quad 2T_{2}^{3}T_{3}^{3} \end{array} \right. \\&\quad \left. \begin{array}{l l l} T_{1}^{1}T_{1}^{2} &{} \quad T_{1}^{1}T_{1}^{3} &{} \quad T_{1}^{2}T_{1}^{3}\\ T_{2}^{1}T_{2}^{2} &{} \quad T_{2}^{1}T_{2}^{3} &{} \quad T_{2}^{2}T_{2}^{3}\\ T_{3}^{1}T_{3}^{2} &{} \quad T_{3}^{1}T_{3}^{3} &{} \quad T_{3}^{2}T_{3}^{3}\\ T_{1}^{1}T_{2}^{2}+T_{2}^{1}T_{1}^{2} &{} \quad T_{2}^{1}T_{1}^{3}+T_{2}^{3}T_{1}^{1} &{} \quad T_{1}^{2}T_{2}^{3}+T_{2}^{2}T_{1}^{3}\\ T_{1}^{1}T_{3}^{2}+T_{3}^{1}T_{1}^{2} &{} \quad T_{1}^{1}T_{3}^{3}+T_{1}^{3}T_{3}^{1} &{} \quad T_{1}^{2}T_{3}^{3}+T_{3}^{2}T_{1}^{3}\\ T_{2}^{1}T_{3}^{2}+T_{3}^{1}T_{2}^{2} &{} \quad T_{2}^{1}T_{3}^{3}+T_{2}^{3}T_{3}^{1} &{} \quad T_{2}^{2}T_{3}^{3}+T_{3}^{2}T_{2}^{3} \end{array}\right] .\!\!\! \end{aligned} \end{aligned}$$
(97)

Also, the transformation matrix \(\underline{\underline{{\widetilde{\mathbf {T}}}}}\) in (53) is defined by

$$\begin{aligned} \underline{\underline{\widetilde{\mathbf {T}}}}=\underline{\underline{\mathbf {T}}}\,\underline{\underline{\widetilde{\widetilde{\mathbf {T}}}}}, \end{aligned}$$
(98)

where the transformation matrix \(\underline{\underline{\widetilde{\widetilde{\mathbf {T}}}}}\) consists of the differences between the constants \({G}_{ij}^{mn}\) and their interpolated counterparts \(\widetilde{G}_{ij}^{mn}\). Thus the rows of the in-plane components consists of zeros and it reads

$$\begin{aligned} \begin{aligned} \underline{\underline{\widetilde{\widetilde{\mathbf {T}}}}}&=\\&\begin{bmatrix} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ \widetilde{\widetilde{G}}_{33}^{11} &{} \widetilde{\widetilde{G}}_{33}^{22} &{} \widetilde{\widetilde{G}}_{33}^{33} &{} \widetilde{\widetilde{G}}_{33}^{12} &{} \widetilde{\widetilde{G}}_{33}^{13} &{} \widetilde{\widetilde{G}}_{33}^{23}\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 2\widetilde{\widetilde{G}}_{13}^{11} &{} 2\widetilde{\widetilde{G}}_{13}^{22} &{} 2\widetilde{\widetilde{G}}_{13}^{33} &{} \widetilde{\widetilde{G}}_{13}^{12}+\widetilde{\widetilde{G}}_{13}^{21} &{} \widetilde{\widetilde{G}}_{13}^{13}+\widetilde{\widetilde{G}}_{13}^{31} &{} \widetilde{\widetilde{G}}_{13}^{23}+\widetilde{\widetilde{G}}_{13}^{32}\\ 2\widetilde{\widetilde{G}}_{23}^{11} &{} 2\widetilde{\widetilde{G}}_{23}^{22} &{} 2\widetilde{\widetilde{G}}_{23}^{33} &{} \widetilde{\widetilde{G}}_{23}^{12}+\widetilde{\widetilde{G}}_{23}^{21} &{} \widetilde{\widetilde{G}}_{23}^{13}+\widetilde{\widetilde{G}}_{23}^{31} &{} \widetilde{\widetilde{G}}_{23}^{23}+\widetilde{\widetilde{G}}_{23}^{32} \end{bmatrix}. \end{aligned} \end{aligned}$$
(99)

The components \(\widetilde{\widetilde{G}}_{ij}^{mn} \) are defined by

$$\begin{aligned} \widetilde{\widetilde{G}}_{ij}^{mn}={G}_{ij}^{mn}- \widetilde{G}_{ij}^{mn}\, , \end{aligned}$$
(100)

The elements \(G_{33}^{mn}\), \(G_{13}^{mn}\) and \(G_{23}^{mn}\) of the matrix \(\underline{\underline{\widetilde{\widetilde{\mathbf {T}}}}}\) are defined by (37), while the elements \(\widetilde{G}_{33}^{mn}\), \(\widetilde{G}_{13}^{mn}\) and \(\widetilde{G}_{23}^{mn}\) are defined by (44).

Finally, the interpolation matrix \(\underline{\underline{\mathbf {M}}}\), which consists of the enhanced modes, is given by

$$\begin{aligned} \begin{aligned}&\underline{\underline{\mathbf {M}}}=\left[ \begin{array}{l l l l l l l l l l} \xi _{1} &{} \, \xi _{1}\xi _{2} &{} \, \xi _{1}\xi _{3} &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0\\ 0 &{} \, 0 &{} \, 0 &{} \, \xi _{2} &{} \, \xi _{1}\xi _{2} &{} \, \xi _{2}\xi _{3} &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0\\ 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, \xi _{3} &{} \, \xi _{1}\xi _{3} &{} \, \xi _{2}\xi _{3} &{} \, \xi _{1}\xi _{2}\xi _{3}\!\!\!\!\!\\ 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0\\ 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0\\ 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 \end{array} \right. \\&\quad \left. \begin{array}{l l l l l l l l l l l} 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0\\ 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0\\ 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0\\ \xi _{1} &{} \, \xi _{2} &{} \, \xi _{1}\xi _{2} &{} \, \xi _{1}\xi _{3} &{} \, \xi _{2}\xi _{3} &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0\\ 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, \xi _{3} &{} \, \xi _{1}\xi _{3} &{} \, \xi _{2}\xi _{3} &{} \, 0 &{} \, 0 &{} \, 0\\ 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, 0 &{} \, \xi _{3} &{} \, \xi _{1}\xi _{3} &{} \, \xi _{2}\xi _{3} \end{array} \right] . \end{aligned} \end{aligned}$$
(101)

Appendix B: developing the geometrical stiffness matrix

In this “Appendix”, the geometric matrix is derived. Thus, the dot product between the stress measure \(\overline{\mathbf {S}}\) and the linearization of the variation of the modified strain measure \(\varDelta \delta \mathbf {E}^{\textsf {Comp}}\) is rewritten using the Voigt notation as follows

$$\begin{aligned} \overline{\mathbf {S}}:\varDelta \delta \mathbf {E}^{\textsf {Comp}}=\varDelta \delta \underline{\mathbf {E}}^{\textsf {Comp}\,\text {T}}\underline{\overline{\mathbf {S}}}, \end{aligned}$$
(102)

where \(\underline{\overline{\mathbf {S}}}\) is a \(6 \times 1\) vector consisting of the modified second Piola-Kircchoff stress components defined by (87), and \({\varDelta \delta \underline{\mathbf {E}}^{\textsf {Comp}}}\) consists of the components of the linearized variation of the modified strain field, and it is defined by

$$\begin{aligned} \begin{aligned} \varDelta \delta \underline{\mathbf {E}}^{\textsf {Comp}}&=\left\{ \varDelta \delta {{E}}_{11}^{\textsf {Comp}},\,\varDelta \delta {{E}}_{22}^{\textsf {Comp}},\,\varDelta \delta {{E}}_{33}^{\textsf {Comp}},\right. \\&\quad \left. 2\varDelta \delta {{E}}_{12}^{\textsf {Comp}},\,2\varDelta \delta {{E}}_{13}^{\textsf {Comp}},\,2\varDelta \delta {{E}}_{23}^{\textsf {Comp}}\right\} ^{\text {T}}. \end{aligned} \end{aligned}$$
(103)

Using (53), the vector \({\varDelta \delta \underline{\mathbf {E}}^{\textsf {Comp}}}\) is defined by

$$\begin{aligned} \varDelta \delta \underline{\mathbf {E}}^{\textsf {Comp}}=\underline{\underline{\mathbf {T}}}\,\varDelta \delta \underline{\widetilde{\mathbf {E}}}^{\textsf {ANS}}+\widetilde{{\underline{\underline{\mathbf {T}}}}}\,\varDelta \delta \underline{\widetilde{\mathbf {E}}}^{0}, \end{aligned}$$
(104)

where the vectors \(\varDelta \delta \underline{\widetilde{\mathbf {E}}}^{\textsf {ANS}}\) and \(\varDelta \delta \underline{\widetilde{\mathbf {E}}}^{0}\) are defined by the following vectors

$$\begin{aligned} \begin{aligned} \varDelta \delta \underline{\widetilde{\mathbf {E}}}^{\textsf {ANS}}&=\left\{ \varDelta \delta \mathcal {E}_{11},\,\varDelta \delta \mathcal {E}_{22},\,\varDelta \delta \mathcal {E}_{33}^{\textsf {ANS}},\right. \\&\quad \left. 2\varDelta \delta \mathcal {E}_{12},\,2\varDelta \delta \mathcal {E}_{13}^{\textsf {ANS}},\,2\varDelta \delta \mathcal {E}_{23}^{\textsf {ANS}}\right\} ^{\text {T}},\\ \varDelta \delta \underline{\widetilde{\mathbf {E}}}^{0}&=\left\{ \varDelta \delta \mathcal {E}_{11}^{0},\,\varDelta \delta \mathcal {E}_{22}^{0},\,\varDelta \delta \mathcal {E}_{33}^{0},\right. \\&\quad \left. 2\varDelta \delta \mathcal {E}_{12}^{0},\,2\varDelta \delta \mathcal {E}_{13}^{0},\,2\varDelta \delta \mathcal {E}_{23}^{0}\right\} ^{\text {T}}. \end{aligned} \end{aligned}$$
(105)

Substituting (104) into (102), it is possible to show that

$$\begin{aligned} \begin{aligned}&\varDelta \delta \underline{\mathbf {E}}^{\textsf {Comp}\,\text {T}}\underline{\overline{\mathbf {S}}}\\&\quad =\varDelta \delta \underline{\widetilde{\mathbf {E}}}^{\textsf {ANS}\,\text {T}}\widetilde{\underline{\mathbf {S}}}+\varDelta \delta \underline{\widetilde{\mathbf {E}}}^{0\,\text {T}}\widetilde{\widetilde{\underline{\mathbf {S}}}}\\&\quad =\varDelta \delta \mathcal {E}_{11}\widetilde{S}_{11}+\varDelta \delta \mathcal {E}_{22}\widetilde{S}_{22}+\varDelta \delta \mathcal {E}_{33}^{\textsf {ANS}}\widetilde{S}_{33}\\&\qquad +2\varDelta \delta \mathcal {E}_{12}\widetilde{S}_{12}+2\varDelta \delta \mathcal {E}_{13}^{\textsf {ANS}}\widetilde{S}_{13}+2\varDelta \delta \mathcal {E}_{23}^{\textsf {ANS}}\widetilde{S}_{23}\\&\qquad +\varDelta \delta \mathcal {E}_{11}^{0}\widetilde{\widetilde{S}}_{11}+\varDelta \delta {\mathcal {E}}_{22}^{0}\widetilde{\widetilde{S}}_{22}+\varDelta \delta {\mathcal {E}}_{33}^{0}\widetilde{\widetilde{S}}_{33}\\&\qquad +2\varDelta \delta {\mathcal {E}}_{12}^{0}\widetilde{\widetilde{S}}_{12}+2\varDelta \delta {\mathcal {E}}_{13}^{0}\widetilde{\widetilde{S}}_{13}+2\varDelta \delta {\mathcal {E}}_{23}^{0}\widetilde{\widetilde{S}}_{23}, \end{aligned} \end{aligned}$$
(106)

where the two stress vectors \(\widetilde{\underline{\mathbf {S}}}\) and \(\widetilde{\widetilde{\underline{\mathbf {S}}}}\) are, respectively, given by

$$\begin{aligned} \begin{aligned} \widetilde{\underline{\mathbf {S}}}&=\left\{ \widetilde{S}_{11},\,\widetilde{S}_{22},\,\widetilde{S}_{33},\,\widetilde{S}_{12},\,\widetilde{S}_{13},\,\widetilde{S}_{23}\right\} ^{\text {T}}=\underline{\underline{\mathbf {T}}}^{\text {T}}\underline{\overline{\mathbf {S}}},\\ \widetilde{\widetilde{\underline{\mathbf {S}}}}&=\left\{ \widetilde{\widetilde{S}}_{11},\,\widetilde{\widetilde{S}}_{22},\,\widetilde{\widetilde{S}}_{33},\,\widetilde{\widetilde{S}}_{12},\,\widetilde{\widetilde{S}}_{13},\,\widetilde{\widetilde{S}}_{23}\right\} ^{\text {T}}=\widetilde{{\underline{\underline{\mathbf {T}}}}}^{\text {T}}\underline{\overline{\mathbf {S}}}. \end{aligned} \end{aligned}$$
(107)

Applying the linearization operator on (67) and (73) yields

$$\begin{aligned} \begin{aligned} \varDelta \delta \mathcal {E}_{11}&=\sum _{I=1}^{8}\sum _{J=1}^{8}\sum _{i=1}^{3}\delta \widehat{u}_{i}^{I}\left[ \frac{\partial N_{I}}{\partial \xi _{1}}\frac{\partial N_{J}}{\partial \xi _{1}}\right] \varDelta \widehat{{u}}_{i}^{J},\\ \varDelta \delta \mathcal {E}_{22}&=\sum _{I=1}^{8}\sum _{J=1}^{8}\sum _{i=1}^{3}\delta \widehat{u}_{i}^{I}\left[ \frac{\partial N_{I}}{\partial \xi _{2}}\frac{\partial N_{J}}{\partial \xi _{2}}\right] \varDelta \widehat{{u}}_{i}^{J},\\ \varDelta \delta \mathcal {E}_{33}^{\textsf {ANS}}&=\sum _{I=1}^{8}\sum _{J=1}^{8}\sum _{i=1}^{3}\sum _{K=A}^{D}\delta \widehat{u}_{i}^{I}\left[ {\widetilde{N}}_{K}\left( \frac{\partial N_{I}^{K}}{\partial \xi _{3}}\frac{\partial N_{J}^{K}}{\partial \xi _{3}}\right) \right] \varDelta \widehat{u}_{i}^{J},\\ \varDelta \delta \mathcal {E}_{12}&=\frac{1}{2}\sum _{I=1}^{8}\sum _{J=1}^{8}\sum _{i=1}^{3}\delta \widehat{u}_{i}^{I}\left[ \frac{\partial N_{I}}{\partial \xi _{1}}\frac{\partial N_{J}}{\partial \xi _{2}}+\frac{\partial N_{I}}{\partial \xi _{2}}\frac{\partial N_{J}}{\partial \xi _{1}}\right] \varDelta \widehat{{u}}_{i}^{J},\\ \varDelta \delta \mathcal {E}_{13}^{\textsf {ANS}}&=\frac{1}{2}\sum _{I=1}^{8}\sum _{J=1}^{8}\sum _{i=1}^{3}\sum _{K=E}^{F}\delta \widehat{u}_{i}^{I}\left[ {\widetilde{N}}_{K}\left( \frac{\partial N_{I}^{K}}{\partial \xi _{1}}\frac{\partial N_{J}^{K}}{\partial \xi _{3}}\right. \right. \\&\quad \left. \left. +\frac{\partial N_{I}^{K}}{\partial \xi _{3}}\frac{\partial N_{J}^{K}}{\partial \xi _{1}}\right) \right] \varDelta \widehat{u}_{i}^{J},\\ \varDelta \delta \mathcal {E}_{23}^{\textsf {ANS}}&=\frac{1}{2}\sum _{I=1}^{8}\sum _{J=1}^{8}\sum _{i=1}^{3}\sum _{K=G}^{H}\delta \widehat{u}_{i}^{I}\left[ {\widetilde{N}}_{K}\left( \frac{\partial N_{I}^{K}}{\partial \xi _{2}}\frac{\partial N_{J}^{K}}{\partial \xi _{3}}\right. \right. \\&\quad \left. \left. +\,\frac{\partial N_{I}^{K}}{\partial \xi _{3}}\frac{\partial N_{J}^{K}}{\partial \xi _{2}}\right) \right] \varDelta \widehat{u}_{i}^{J}. \end{aligned} \end{aligned}$$
(108)

Moreover, the linearization of 68 takes the form,

$$\begin{aligned} \begin{aligned} \varDelta \delta \mathcal {E}_{mn}^{0}&= \frac{1}{2}\sum _{I=1}^{8}\sum _{J=1}^{8}\sum _{i=1}^{3}\delta \widehat{u}_{i}^{I}\left[ \frac{\partial N^{0}_{I}}{\partial \xi _{m}}\frac{\partial N^{0}_{J}}{\partial \xi _{n}}+\frac{\partial N^{0}_{I}}{\partial \xi _{n}}\frac{\partial N^{0}_{J}}{\partial \xi _{m}}\right] \delta \widehat{u}_{i}^{J}. \end{aligned} \end{aligned}$$
(109)

Substituting (108) and (109) into (106) yields,

$$\begin{aligned} \varDelta \delta \underline{\mathbf {E}}^{\textsf {Comp}\,\text {T}}\underline{\overline{\mathbf {S}}}=\sum _{I=1}^{8}\sum _{J=1}^{8}\sum _{i=1}^{3}\delta \widehat{u}_{i}^{I}G_{IJ}\varDelta \widehat{u}_{i}^{J}, \end{aligned}$$
(110)

where the set of the coefficients \(G_{IJ}\) are given by

$$\begin{aligned} G_{IJ}= & {} \frac{\partial N_{I}}{\partial \xi _{1}}{\widetilde{S}}_{11}\frac{\partial N_{J}}{\partial \xi _{1}}+\frac{\partial N_{I}}{\partial \xi _{1}}\widetilde{S}_{12}\frac{\partial N_{J}}{\partial \xi _{2}}+\frac{\partial N_{I}}{\partial \xi _{2}}\widetilde{S}_{12}\frac{\partial N_{J}}{\partial \xi _{1}}\nonumber \\&+\frac{\partial N_{I}}{\partial \xi _{2}}\widetilde{S}_{22}\frac{\partial N_{J}}{\partial \xi _{2}}+\sum _{K=A}^{D}\widetilde{N}_{K}\frac{\partial N^{K}_{I}}{\partial \xi _{3}}\widetilde{S}_{33}\frac{\partial N^{K}_{J}}{\partial \xi _{3}}\nonumber \\&+\sum _{K=E}^{F}\widetilde{N}_{K}\left( \frac{\partial N^{K}_{I}}{\partial \xi _{1}}\widetilde{S}_{13}\frac{\partial N^{K}_{J}}{\partial \xi _{3}}+\frac{\partial N^{K}_{I}}{\partial \xi _{3}}\widetilde{S}_{13}\frac{\partial N^{K}_{J}}{\partial \xi _{1}}\right) \nonumber \\&+\sum _{K=G}^{H}\widetilde{N}_{K}\left( \frac{\partial N^{K}_{I}}{\partial \xi _{2}}\widetilde{S}_{23}\frac{\partial N^{K}_{J}}{\partial \xi _{3}}+\frac{\partial N^{K}_{I}}{\partial \xi _{3}}\widetilde{S}_{23}\frac{\partial N^{K}_{J}}{\partial \xi _{2}}\right) \nonumber \\&-\left( \frac{\partial N^{0}_{I}}{\partial \xi _{1}}\widetilde{\widetilde{S}}_{11}\frac{\partial N^{0}_{J}}{\partial \xi _{1}}+\frac{\partial N^{0}_{I}}{\partial \xi _{1}}\widetilde{\widetilde{S}}_{12}\frac{\partial N^{0}_{J}}{\partial \xi _{2}}+\frac{\partial N^{0}_{I}}{\partial \xi _{2}}\widetilde{\widetilde{S}}_{12}\frac{\partial N^{0}_{J}}{\partial \xi _{1}}\right. \nonumber \\&+\frac{\partial N^{0}_{I}}{\partial \xi _{1}}\widetilde{\widetilde{S}}_{13}\frac{\partial N^{0}_{J}}{\partial \xi _{3}}+\frac{\partial N^{0}_{I}}{\partial \xi _{3}}\widetilde{\widetilde{S}}_{13}\frac{\partial N^{0}_{J}}{\partial \xi _{1}}+\frac{\partial N^{0}_{I}}{\partial \xi _{2}}\widetilde{\widetilde{S}}_{22}\frac{\partial N^{0}_{J}}{\partial \xi _{2}}\nonumber \\&+\left. \frac{\partial N^{0}_{I}}{\partial \xi _{2}}\widetilde{\widetilde{S}}_{23}\frac{\partial N^{0}_{J}}{\partial \xi _{3}}+\frac{\partial N^{0}_{I}}{\partial \xi _{3}}\widetilde{\widetilde{S}}_{23}\frac{\partial N^{0}_{J}}{\partial \xi _{2}}+\frac{\partial N^{0}_{I}}{\partial \xi _{3}}\widetilde{\widetilde{S}}_{33}\frac{\partial N^{0}_{J}}{\partial \xi _{3}}\right) .\nonumber \\ \end{aligned}$$
(111)

Finally, using (92), it can be shown that

$$\begin{aligned} \int _{\varOmega _{0}^{e}}\overline{\mathbf {S}}:\varDelta \delta \mathbf {E}^{\textsf {Comp}}\,d\varOmega _{0}^{e}=\int _{\varOmega _{0}^{e}}\varDelta \delta \underline{\mathbf {E}}^{\textsf {Comp}\,\text {T}}\underline{\overline{\mathbf {S}}}\,d\varOmega _{0}^{e}=\delta \underline{\widehat{\mathbf {u}}}\,\underline{\underline{\mathbf {K}}}_{\text {G}}\varDelta \underline{\widehat{\mathbf {u}}}, \end{aligned}$$
(112)

where \(\underline{\underline{\mathbf {K}}}_{\text {G}}\) is the geometric stiffness matrix and takes the form

$$\begin{aligned} \underline{\underline{\mathbf {K}}}_{\text {G}}= \begin{bmatrix} \overline{G}_{11}\underline{\underline{\mathbf {I}}}\quad &{} \overline{G}_{12}\underline{\underline{\mathbf {I}}}\quad &{} \ldots \quad &{} \overline{G}_{18}\underline{\underline{\mathbf {I}}}\\ \overline{G}_{21}\underline{\underline{\mathbf {I}}}\quad &{} \overline{G}_{22}\underline{\underline{\mathbf {I}}}\quad &{} \ldots \quad &{} \overline{G}_{28}\underline{\underline{\mathbf {I}}}\\ \vdots \quad &{} \vdots \quad &{} \ddots \quad &{} \vdots \\ \overline{G}_{81}\underline{\underline{\mathbf {I}}}\quad &{} \overline{G}_{82}\underline{\underline{\mathbf {I}}}\quad &{} \ldots \quad &{} \overline{G}_{88}\underline{\underline{\mathbf {I}}} \end{bmatrix}. \end{aligned}$$
(113)

In which \(\underline{\underline{\mathbf {I}}}\) is the \(3\times 3\) identity matrix, and the set of the coefficients \(\overline{G}_{IJ}\) are defined by

$$\begin{aligned} \overline{G}_{IJ}=\int _{\varOmega _{0}^{e}}G_{IJ}\,d\varOmega _{0}^{e}. \end{aligned}$$
(114)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bishara, D., Jabareen, M. A solid–shell formulation based on the assumed natural inhomogeneous strains for modeling the viscoelastic response of electro-active polymers. Comput Mech 66, 1–25 (2020). https://doi.org/10.1007/s00466-020-01838-w

Download citation

Keywords

  • Electro-active polymers
  • Solid–shell
  • Electromechanical coupling
  • Finite element
  • Dielectric-elastomer
  • Multiphysics