Skip to main content
Log in

Solving primal plasticity increment problems in the time of a single predictor–corrector iteration

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

The Truncated Nonsmooth Newton Multigrid (TNNMG) method is a well-established method for the solution of strictly convex block-separably nondifferentiable minimization problems. It achieves multigrid-like performance even for non-smooth nonlinear problems, while at the same time being globally convergent and without employing penalty parameters. We show that the algorithm can be applied to the primal problem of classical small-strain elastoplasticity with hardening. Numerical experiments show that the method is considerably faster than classical predictor–corrector methods. Indeed, solving an entire increment problem with TNNMG can take less time than a single predictor–corrector iteration for the same problem. At the same time, memory consumption is reduced considerably, in particular for three-dimensional problems. Since the algorithm does not rely on differentiability of the objective functional, nonsmooth yield laws can be easily incorporated. The method is closely related to a predictor–corrector scheme with a consistent tangent predictor and line search. We explain the algorithm, prove global convergence, and show its efficiency using standard benchmarks from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. A preprint version of this article [26] proposed to apply one multigrid iteration to the Schur complement system constructed in this section, which is positive-definite even if some degrees of freedom are truncated away. However, measurements showed that in this approach the cost of repeatedly computing the Schur complement dominates the cost of the multigrid iteration, without leading to a relevant improvement in the convergence speed.

  2. Here the method assumes that \(\varphi \) is \(C^2\)-differentiable for all \(p \ne 0\). Generalizations appear straightforward, but seem to be absent from the literature.

  3. Note that \(H_\nu ^\text {pc}\) differs from truncated tangent matrix \(H_\nu \) as defined in Sect. 4.3. While \(H_\nu \) has zero rows and columns for degrees of freedom where the dissipation is not differentiable, \(H_\nu ^\text {pc}\) keeps the elastic part there. However, as the corresponding degrees of freedom are held fixed in Step 1c there is no practical difference.

  4. http://faculty.cse.tamu.edu/davis/suitesparse.html.

  5. This choice of accuracy is actually a form of cheating in favour of the predictor–corrector method. Textbook predictor–corrector methods solve the predictor problems up to machine accuracy, i.e., several orders of magnitude more precise than a multigrid method with the given termination criterion. Using a tighter termination criterion for the linear multigrd method would increase the run-time of the predictor–corrector method even more.

References

  1. Aifantis EC (1984) On the microstructural origin of certain inelastic models. J Eng Mater Tech 106:326–330

    Article  Google Scholar 

  2. Alberty J, Carstensen C, Zarrabi D (1999) Adaptive numerical analysis in primal elastoplasticity with hardening. Comput Methods Appl Mech Eng 171:175–204

    Article  MathSciNet  MATH  Google Scholar 

  3. Caddemi S, Martin JB (1991) Convergence of the Newton–Raphson algorithm in elastic–plastic incremental analysis. Int J Numer Methods Eng. 31(1):177–191. https://doi.org/10.1002/nme.1620310110

    Article  MathSciNet  MATH  Google Scholar 

  4. Carstensen C (1997) Domain decomposition for a non-smooth convex minimization problem and its application to plasticity. Numer Linear Algebra Appl 4(3):177–190

    Article  MathSciNet  MATH  Google Scholar 

  5. Carstensen C (1999) Numerical analysis of the primal problem of elastoplasticity with hardening. Numer Math 82:577–597

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen Y, Davis TA, Hager WW, Rajamanickam S (2008) Algorithm 887: CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans Math Softw 35(3):22:1–22:14. https://doi.org/10.1145/1391989.1391995

    Article  MathSciNet  Google Scholar 

  7. Christensen PW (2002) A nonsmooth Newton method for elastoplastic problems. Comput Methods Appl Mech Eng 191:1189–1219

    Article  MathSciNet  MATH  Google Scholar 

  8. Drusvyatskiy D, Paquette C (2018) Variational analysis of spectral functions simplified. J. Convex Anal 25. arXiv preprint: arXiv:1506.05170

  9. Ebobisse F, Neff P (2010) Existence and uniqueness for rate-independent infinitesimal gradient plasticity with isotropic hardening and plastic spin. Math Mech Solids 15(6):691–703

    Article  MathSciNet  MATH  Google Scholar 

  10. Ekeland I, Temam R (1999) Convex analysis and variational problems. SIAM, Delhi

    Book  MATH  Google Scholar 

  11. Geiger C, Kanzow C (2002) Theorie und numerik restringierter optimierungsaufgaben. Springer, Berlin

    Book  MATH  Google Scholar 

  12. Gräser C (2011) Convex minimization and phase field models. Ph.D. thesis. Freie Universität Berlin

  13. Gräser C, Kornhuber R (2009) Multigrid methods for obstacle problems. J Comp Math 27(1):1–44

    MathSciNet  MATH  Google Scholar 

  14. Gräser C, Sack U, Sander O (2009) Truncated nonsmooth Newton multigrid methods for convex minimization problems. In: Barth TJ, Griebel M, Keyes DE, Nieminen RM, Roose D, Schlick T (eds) Domain decomposition methods in science and engineering XVIII. Springer, Berlin, pp 129–136. https://doi.org/10.1007/978-3-642-02677-5_12

    Chapter  MATH  Google Scholar 

  15. Gräser C, Sander O (2014) Polyhedral Gauss–Seidel converges. J Numer Math 22(3):221–254

    Article  MathSciNet  MATH  Google Scholar 

  16. Gräser C, Sander O (2017) Truncated nonsmooth Newton multigrid methods for block-separable minimization problems. In: arXiv e-prints. To appear in IMA J Numer Anal arXiv:1709.04992 [math.NA]

  17. Gruber PG, Valdman J (2009) Solution of one-time-step problems in elastoplasticity by a slant Newton method. SIAM J Sci Comput 31(2):1558–1580

    Article  MathSciNet  MATH  Google Scholar 

  18. Han W, Reddy BD (2013) Plasticity, 2nd edn. Springer, Berlin

    Book  MATH  Google Scholar 

  19. Lee Y-J, Wu J, Xu J, Zikatanov L (2007) Robust subspace correction methods for nearly singular systems. Math Models Methods Appl Sci 17(11):1937–1963. https://doi.org/10.1142/S0218202507002522

    Article  MathSciNet  MATH  Google Scholar 

  20. Lewis AS (1996) Convex analysis on the Hermitian matrices. SIAM J Optim 6(1):164–177

    Article  MathSciNet  MATH  Google Scholar 

  21. Martin J, Caddemi S (1994) Sufficient conditions for convergence of the Newton–Raphson iterative algorithm in incremental elastic–plastic analysis. Eur J Mech A Solids 13(3):351–365

    MathSciNet  MATH  Google Scholar 

  22. Neff P, Sydow A, Wieners C (2009) Numerical approximation of incremental infinitesimal gradient plasticity. Int J Numer Methods Eng 77:414–436

    Article  MathSciNet  MATH  Google Scholar 

  23. Pipping E, Sander O, Kornhuber R (2015) Variational formulation of rateand state-dependent friction problems. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 95(4):377–395. https://doi.org/10.1002/zamm.201300062

    Article  MathSciNet  MATH  Google Scholar 

  24. Rencontré L, Bird W, Martin J (1992) Internal variable formulation of a backward difference corrector algorithm for piecewise linear yield surfaces. Meccanica 27:13–24

    Article  MATH  Google Scholar 

  25. Rockafellar RT, Wets RJ-B (2010) Variational analysis. Springer, Berlin

    MATH  Google Scholar 

  26. Sander O (July 2017) Solving primal plasticity increment problems in the time of a single predictor-corrector iteration. In: arXiv e-prints. arXiv:1707.03733 [math.NA]

  27. Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, Berlin

    MATH  Google Scholar 

  28. Stein E, Wriggers P, Rieger A, Schmidt M (2002) Benchmarks. In: Stein E (ed)Errorcontrolled adaptive finite elements in solid mechanics. Wiley. Chap. 11, pp 385-404

  29. Wohlmuth B, Krause R (2003) Monotone methods on nonmatching grids for nonlinear contact problems. SIAM J Sci Comput 25(1):324–347

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Sander.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sander, O., Jaap, P. Solving primal plasticity increment problems in the time of a single predictor–corrector iteration. Comput Mech 65, 663–685 (2020). https://doi.org/10.1007/s00466-019-01788-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01788-y

Keywords

Navigation