Skip to main content
Log in

A stochastic spectral finite element method for solution of faulting-induced wave propagation in materially random continua without explicitly modeled discontinuities

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper proposes a new efficient stochastically adapted spectral finite element method to simulate fault dislocation and its wave propagation consequences. For this purpose, a dynamic form of the split node technique is formulated and developed to stochastic spectral finite element method in order to model fault dislocation happening within a random media without increasing computational demand caused by discontinuities. As discontinuities are not modeled explicitly herein, no additional degrees of freedom are implemented in the proposed method due to the discontinuities, while effects of these discontinuities are preserved. Therefore, the present method simultaneously includes merits of stochastic finite element method, spectral finite element method and the spilt node technique, thereby providing a new numerical tool for analysis of wave propagation under fault dislocation in random media. Several numerical simulations are solved by the proposed method, which present stochastic analysis of fault slip-induced wave propagation in layered random media. Formulations and numerical results demonstrate capability, application and efficiency of this novel method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ghanem RG, Spanos PD (2003) Stochastic Finite elements: a spectral approach. Courier Dover Publications, Mineola

    MATH  Google Scholar 

  2. Kaminski M (2013) The stochastic perturbation method for computational mechanics. Wiley, Hoboken

    Book  MATH  Google Scholar 

  3. Stefanou G (2009) The stochastic finite element method: past, present and future. Comput Methods Appl Mech Eng 198(9–12):1031–1051. https://doi.org/10.1016/j.cma.2008.11.007

    Article  MATH  Google Scholar 

  4. Xiu D (2010) Numerical methods for stochastic computations: a spectral method approach. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  5. Anders M, Hori M (1999) Stochastic finite element method for elasto-plastic body. Int J Numer Methods Eng 46(11):1897–1916. https://doi.org/10.1002/(SICI)1097-0207(19991220)46:11%3c1897:AID-NME758%3e3.0.CO;2-3

    Article  MATH  Google Scholar 

  6. Kamiński M (2015) On the dual iterative stochastic perturbation-based finite element method in solid mechanics with Gaussian uncertainties. Int J Numer Methods Eng 104(11):1038–1060. https://doi.org/10.1002/nme.4976

    Article  MathSciNet  MATH  Google Scholar 

  7. Papadopoulos V, Kalogeris I (2016) A Galerkin-based formulation of the probability density evolution method for general stochastic finite element systems. Comput Mech 57(5):701–716. https://doi.org/10.1007/s00466-015-1256-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Kamiński MM (2009) A generalized stochastic perturbation technique for plasticity problems. Comput Mech 45(4):349. https://doi.org/10.1007/s00466-009-0455-7

    Article  MathSciNet  MATH  Google Scholar 

  9. van den Ende MPA, Chen J, Ampuero JP, Niemeijer AR (2018) A comparison between rate-and-state friction and microphysical models, based on numerical simulations of fault slip. Tectonophysics 733:273–295. https://doi.org/10.1016/j.tecto.2017.11.040

    Article  Google Scholar 

  10. Volterra V Sur l’équilibre des corps élastiques multiplement connexes. In: Annales scientifiques de l’Ecole Normale superieure, 1907. Société mathématique de France, pp 401–517

  11. van Zwieten GJ, Hanssen RF, Gutiérrez MA (2013) Overview of a range of solution methods for elastic dislocation problems in geophysics. J Geophys Res Solid Earth 118(4):1721–1732. https://doi.org/10.1029/2012JB009278

    Article  Google Scholar 

  12. Melosh HJ, Raefsky A (1983) Anelastic response of the Earth to a dip slip earthquake. J Geophys Res Solid Earth 88(B1):515–526. https://doi.org/10.1029/JB088iB01p00515

    Article  Google Scholar 

  13. Melosh HJ, Raefsky A (1981) A simple and efficient method for introducing faults into finite element computations. Bull Seismol Soc Am 71(5):1391–1400

    Google Scholar 

  14. Dalguer LA, Day SM (2007) Staggered-grid split-node method for spontaneous rupture simulation. J Geophys Res Solid Earth 112(B2):B02302. https://doi.org/10.1029/2006JB004467

    Article  Google Scholar 

  15. Dalguer LA, Day SM (2006) Comparison of fault representation methods in finite difference simulations of dynamic rupture. Bull Seismol Soc Am 96(5):1764–1778. https://doi.org/10.1785/0120060024

    Article  Google Scholar 

  16. Andrews DJ (1999) Test of two methods for faulting in finite-difference calculations. Bull Seismol Soc Am 89(4):931–937

    Google Scholar 

  17. van Zwieten GJ, van Brummelen EH, van der Zee KG, Gutiérrez MA, Hanssen RF (2014) Discontinuities without discontinuity: the weakly-enforced slip method. Comput Methods Appl Mech Eng 271:144–166. https://doi.org/10.1016/j.cma.2013.12.004

    Article  MathSciNet  MATH  Google Scholar 

  18. Soares D Jr, Mansur WJ (2009) An efficient time-truncated boundary element formulation applied to the solution of the two-dimensional scalar wave equation. Eng Anal Bound Elem 33(1):43–53. https://doi.org/10.1016/j.enganabound.2008.04.002

    Article  MathSciNet  MATH  Google Scholar 

  19. Hamzeh Javaran S, Khaji N, Moharrami H (2011) A dual reciprocity BEM approach using new Fourier radial basis functions applied to 2D elastodynamic transient analysis. Eng Anal Bound Elem 35(1):85–95. https://doi.org/10.1016/j.enganabound.2010.05.014

    Article  MathSciNet  MATH  Google Scholar 

  20. Javaran SH, Khaji N, Noorzad A (2010) First kind Bessel function (J-Bessel) as radial basis function for plane dynamic analysis using dual reciprocity boundary element method. Acta Mech 218(3):247–258. https://doi.org/10.1007/s00707-010-0421-7

    MATH  Google Scholar 

  21. Romero A, Tadeu A, Galvín P, António J (2015) 2.5D coupled BEM–FEM used to model fluid and solid scattering wave. Int J Numer Methods Eng 101(2):148–164. https://doi.org/10.1002/nme.4801

    Article  MathSciNet  MATH  Google Scholar 

  22. Shi F, Lowe MJS, Skelton EA, Craster RV (2018) A time-domain finite element boundary integral approach for elastic wave scattering. Comput Mech 61(4):471–483. https://doi.org/10.1007/s00466-017-1471-7

    Article  MathSciNet  MATH  Google Scholar 

  23. Idesman A, Pham D, Foley JR, Schmidt M (2014) Accurate solutions of wave propagation problems under impact loading by the standard, spectral and isogeometric high-order finite elements. Comparative study of accuracy of different space-discretization techniques. Finite Elem Anal Des 88:67–89. https://doi.org/10.1016/j.finel.2014.05.007

    Article  MathSciNet  Google Scholar 

  24. Noh G, Bathe K-J (2013) An explicit time integration scheme for the analysis of wave propagations. Comput Struct 129:178–193. https://doi.org/10.1016/j.compstruc.2013.06.007

    Article  Google Scholar 

  25. Ham S, Bathe K-J (2012) A finite element method enriched for wave propagation problems. Comput Struct 94–95:1–12. https://doi.org/10.1016/j.compstruc.2012.01.001

    Article  Google Scholar 

  26. Kim K-T, Zhang L, Bathe K-J (2018) Transient implicit wave propagation dynamics with overlapping finite elements. Comput Struct 199:18–33. https://doi.org/10.1016/j.compstruc.2018.01.007

    Article  Google Scholar 

  27. Żak A, Krawczuk M, Skarbek Ł, Palacz M (2014) Numerical analysis of elastic wave propagation in unbounded structures. Finite Elem Anal Des 90:1–10. https://doi.org/10.1016/j.finel.2014.06.001

    Article  Google Scholar 

  28. Song C (2009) The scaled boundary finite element method in structural dynamics. Int J Numer Methods Eng 77(8):1139–1171. https://doi.org/10.1002/nme.2454

    Article  MathSciNet  MATH  Google Scholar 

  29. Yang ZJ, Deeks AJ (2006) A frequency-domain approach for modelling transient elastodynamics using scaled boundary finite element method. Comput Mech 40(4):725–738. https://doi.org/10.1007/s00466-006-0135-9

    Article  MATH  Google Scholar 

  30. Khodakarami MI, Khaji N (2014) Wave propagation in semi-infinite media with topographical irregularities using decoupled equations method. Soil Dyn Earthq Eng 65:102–112. https://doi.org/10.1016/j.soildyn.2014.06.006

    Article  Google Scholar 

  31. Khodakarami MI, Khaji N, Ahmadi MT (2012) Modeling transient elastodynamic problems using a novel semi-analytical method yielding decoupled partial differential equations. Comput Methods Appl Mech Eng 213–216:183–195. https://doi.org/10.1016/j.cma.2011.11.016

    Article  MathSciNet  MATH  Google Scholar 

  32. Toki K, Sawada S, Okashige Y (1987) Simulation of fault rupture process by the stochastic finite element method. Probab Eng Mech 2(3):129–137. https://doi.org/10.1016/0266-8920(87)90003-8

    Article  Google Scholar 

  33. Hori M (2011) Introduction to computational earthquake engineering. World Scientific, Singapore

    Book  MATH  Google Scholar 

  34. Hori M, Ichimura T, Nakagawa H (2003) Analysis methods of stochastic model: application to strong motion and fault problems. Struct Eng Earthq Eng 20(2):105s–118s

    Article  Google Scholar 

  35. Giraldo D, Restrepo D (2017) The spectral cell method in nonlinear earthquake modeling. Comput Mech 60(6):883–903. https://doi.org/10.1007/s00466-017-1454-8

    Article  MathSciNet  MATH  Google Scholar 

  36. Hainzl S, Zöller G, Brietzke GB, Hinzen K-G (2013) Comparison of deterministic and stochastic earthquake simulators for fault interactions in the Lower Rhine Embayment, Germany. Geophys J Int 195(1):684–694. https://doi.org/10.1093/gji/ggt271

    Article  Google Scholar 

  37. Korn M (1993) Seismic waves in random media. J Appl Geophys 29(3–4):247–269. https://doi.org/10.1016/0926-9851(93)90007-L

    Article  Google Scholar 

  38. Manolis GD, Bagtzoglou AC (1992) A numerical comparative study of wave propagation in inhomogeneous and random media. Comput Mech 10(6):397–413. https://doi.org/10.1007/BF00363995

    Article  MATH  Google Scholar 

  39. Ripperger J, Ampuero JP, Mai PM, Giardini D (2007) Earthquake source characteristics from dynamic rupture with constrained stochastic fault stress. J Geophys Res Solid Earth 112(B4):B04311. https://doi.org/10.1029/2006JB004515

    Article  Google Scholar 

  40. Zak A, Krawczuk M, Ostachowicz W (2006) Propagation of in-plane waves in an isotropic panel with a crack. Finite Elem Anal Des 42(11):929–941. https://doi.org/10.1016/j.finel.2006.01.013

    Article  Google Scholar 

  41. Ham S, Lai B, Bathe K-J (2014) The method of finite spheres for wave propagation problems. Comput Struct 142:1–14. https://doi.org/10.1016/j.compstruc.2014.05.012

    Article  Google Scholar 

  42. Noh G, Ham S, Bathe K-J (2013) Performance of an implicit time integration scheme in the analysis of wave propagations. Comput Struct 123:93–105. https://doi.org/10.1016/j.compstruc.2013.02.006

    Article  Google Scholar 

  43. Igel H, Käser M, Stupazzini M (2014) Simulation of seismic wave propagation in media with complex geometries. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, Berlin, pp 1–32. https://doi.org/10.1007/978-3-642-27737-5_468-2

    Google Scholar 

  44. Sawada M, Haba K, Hori M (2018) Estimation of surface fault displacement by high performance computing. J Earthq Tsunami (article in press)

  45. Hennings B, Lammering R, Gabbert U (2013) Numerical simulation of wave propagation using spectral finite elements. CEAS Aeronaut J 4(1):3–10. https://doi.org/10.1007/s13272-012-0053-9

    Article  Google Scholar 

  46. Kudela P, Krawczuk M, Ostachowicz W (2007) Wave propagation modelling in 1D structures using spectral finite elements. J Sound Vib 300(1–2):88–100. https://doi.org/10.1016/j.jsv.2006.07.031

    Article  MATH  Google Scholar 

  47. Priolo E, Carcione JM, Seriani G (1994) Numerical simulation of interface waves by high-order spectral modeling techniques. J Acoust Soc Am 95(2):681–693

    Article  Google Scholar 

  48. Witkowski W, Rucka M, Chróścielewski J, Wilde K (2012) On some properties of 2D spectral finite elements in problems of wave propagation. Finite Elem Anal Des 55:31–41. https://doi.org/10.1016/j.finel.2012.02.001

    Article  Google Scholar 

  49. Komatitsch D, Tromp J (1999) Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys J Int 139(3):806–822. https://doi.org/10.1046/j.1365-246x.1999.00967.x

    Article  Google Scholar 

  50. Zakian P, Khaji N (2016) A novel stochastic-spectral finite element method for analysis of elastodynamic problems in the time domain. Meccanica 51(4):893–920. https://doi.org/10.1007/s11012-015-0242-9

    Article  MathSciNet  MATH  Google Scholar 

  51. Khaji N, Zakian P (2017) Uncertainty analysis of elastostatic problems incorporating a new hybrid stochastic-spectral finite element method. Mech Adv Mater Struct 24(12):1030–1042. https://doi.org/10.1080/15376494.2016.1202359

    Article  Google Scholar 

  52. Haskell NA (1969) Elastic displacements in the near-field of a propagating fault. Bull Seismol Soc Am 59(2):865–908

    Google Scholar 

  53. Zakian P, Khaji N, Kaveh A (2017) Graph theoretical methods for efficient stochastic finite element analysis of structures. Comput Struct 178:29–46. https://doi.org/10.1016/j.compstruc.2016.10.009

    Article  Google Scholar 

  54. Mohammadi S (2012) XFEM fracture analysis of composites. Wiley, Hoboken

    Book  Google Scholar 

  55. Gracie R, Ventura G, Belytschko T (2007) A new fast finite element method for dislocations based on interior discontinuities. Int J Numer Methods Eng 69(2):423–441. https://doi.org/10.1002/nme.1896

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Iran National Science Foundation (INSF) for the financial support of their research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Khaji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakian, P., Khaji, N. A stochastic spectral finite element method for solution of faulting-induced wave propagation in materially random continua without explicitly modeled discontinuities. Comput Mech 64, 1017–1048 (2019). https://doi.org/10.1007/s00466-019-01692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01692-5

Keywords

Navigation