Skip to main content
Log in

A virtual element method for transversely isotropic elasticity

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This work studies the approximation of plane problems concerning transversely isotropic elasticity, using a low-order virtual element method (VEM), with a focus on near-incompressibility and near-inextensibility. Additionally, both homogeneous problems, in which the plane of isotropy is fixed; and non-homogeneous problems, in which the fibre direction defining the isotropy plane varies with position, are explored. In the latter case various options are considered for approximating the non-homogeneous fibre directions at an element level. Through a range of numerical examples the VEM approximations are shown to be robust and locking-free for several element geometries and for fibre directions that correspond to both mild and strong non-homogeneity. Further, the convergence rate of the VEM is shown to be comparable to classical low-order standard finite element approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Belytschko T, Liu WK, Moran B, Elkhodary K (2014) Nonlinear finite elements for continua and structures. Wiley, Hoboken

    MATH  Google Scholar 

  2. Wriggers P (2008) Nonlinear finite element methods. Springer, Berlin

    MATH  Google Scholar 

  3. Boffi D, Brezzi F, Fortin M (2013) Mixed finite element methods and applications. Springer, New York. https://doi.org/10.1007/978-3-642-36519-5

    Book  MATH  Google Scholar 

  4. Hughes T (1987) The finite element method. Linear static and dynamic finite element analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  5. Arnold D, Brezzi F, Cockburn B, Marini L (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39:1749–1779. https://doi.org/10.1137/S0036142901384162

    Article  MathSciNet  MATH  Google Scholar 

  6. Grieshaber B, McBride A, Reddy B (2015) Uniformly convergent interior penalty methods using multilinear approximations for problems in elasticity. SIAM J Numer Anal 53:2255–2278. https://doi.org/10.1137/140966253

    Article  MathSciNet  MATH  Google Scholar 

  7. Hansbo P, Larson M (2002) Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput Methods Appl Mech Eng 191:1895–1908. https://doi.org/10.1016/S0045-7825(01)00358-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Wihler TP (2004) Locking-free DGFEM for elasticity problems in polygons. IMANJA 24(1):45–75. https://doi.org/10.1093/imanum/24.1.45

    MathSciNet  MATH  Google Scholar 

  9. Beirão da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini L, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(01):199–214. https://doi.org/10.1142/S0218202512500492

    Article  MathSciNet  MATH  Google Scholar 

  10. Beirão da Veiga L, Brezzi F, Marini L, Russo A (2014) The hitchhiker’s guide to the virtual element method. Math Models Methods Appl Sci 24:1541–1573. https://doi.org/10.1142/S021820251440003X

    Article  MathSciNet  MATH  Google Scholar 

  11. Gain A, Talischi C, Paulino G (2014) On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput Methods Appl Mech Eng 282:132–160. https://doi.org/10.1016/j.cma.2014.05.005

    Article  MathSciNet  MATH  Google Scholar 

  12. Chi H, Beirão da Veiga L, Paulino G (2017) Some basic formulations of the virtual element method (VEM) for finite deformations. Comput Methods Appl Mech Eng 318:148–192. https://doi.org/10.1016/j.cma.2016.12.020

    Article  MathSciNet  Google Scholar 

  13. Wriggers P, Reddy B, Rust W, Hudobivnik B (2017) Efficient virtual element formulations for compressible and incompressible finite deformations. Comput Mech 60:253–268. https://doi.org/10.1007/s00466-017-1405-4

    Article  MathSciNet  MATH  Google Scholar 

  14. Artioli E, Beirão da Veiga L, Lovadina C, Sacco E (2017) Arbitrary order 2D virtual elements for polygonal meshes: part II, inelastic problem. Comput Mech 60:643–657. https://doi.org/10.1007/s00466-017-1429-9

    Article  MathSciNet  MATH  Google Scholar 

  15. Beirão da Veiga L, Lovadina C, Mora D (2015) A virtual element method for elastic and inelastic problems on polytope meshes. Comput Methods Appl Mech Eng 295:327–346. https://doi.org/10.1016/j.cma.2015.07.013

    Article  MathSciNet  MATH  Google Scholar 

  16. Wriggers P, Hudobivnik B (2017) A low order virtual element formulation for finite elasto-plastic deformations. Comput Methods Appl Mech Eng 327:459–477. https://doi.org/10.1016/j.cma.2017.08.053

    Article  MathSciNet  Google Scholar 

  17. Wriggers P, Rust W, Reddy B (2016) A virtual element method for contact. Comput Mech 58:1039–1050. https://doi.org/10.1007/s00466-016-1331-x

    Article  MathSciNet  MATH  Google Scholar 

  18. Wriggers P, Hudobivnik B, Korelc J (2018) Efficient low order virtual elements for anisotropic materials at finite strains. In: Advances in computational plasticity, computational methods in applied sciences. Springer, Berlin. https://doi.org/10.1007/978-3-319-60885-3_20

    Google Scholar 

  19. Auricchio F, Scalet G, Wriggers P (2017) Fiber-reinforced materials: finite elements for the treatment of the inextensibility constraint. Comput Mech 60:905–922. https://doi.org/10.1007/s00466-017-1437-9

    Article  MathSciNet  MATH  Google Scholar 

  20. Rasolofoson F, Grieshaber B, Reddy BD (2019) Finite element approximations for near-incompressible and near-inextensible transversely isotropic bodies. Int J Numer Methods Eng 117(6):693–712. https://doi.org/10.1002/nme.5972

    Article  MathSciNet  Google Scholar 

  21. Artioli E, de Miranda S, Lovadina C, Patruno L (2017) A stress/displacement virtual element method for plane elasticity problems. Comput Methods Appl Mech Eng 325:155–174. https://doi.org/10.1016/j.cma.2017.06.036

    Article  MathSciNet  Google Scholar 

  22. Artioli E, de Miranda S, Lovadina C, Patruno L (2018) An equilibrium-based stress recovery procedure for the VEM. Int J Numer Methods Eng 117(8):885–900. https://doi.org/10.1002/nme.5983

    Article  MathSciNet  Google Scholar 

  23. Exadaktylos G (2001) On the constraints and relations of elastic constants of transversely isotropic geomaterials. Int J Rock Mech Min Sci 38:941–956. https://doi.org/10.1016/S1365-1609(01)00063-6

    Article  Google Scholar 

  24. Lai WM, Krempl E, Rubin DH (2009) Introduction to continuum mechanics. Elsevier Science & Technology, Amsterdam

    MATH  Google Scholar 

  25. Artioli E, Beirão da Veiga L, Lovadina C, Sacco E (2017) Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem. Comput Mech 60:355–377. https://doi.org/10.1007/s00466-017-1404-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was carried out with support from the National Research Foundation of South Africa, through the South African Research Chair in Computational Mechanics. The authors acknowledge with thanks this support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. van Huyssteen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, B.D., van Huyssteen, D. A virtual element method for transversely isotropic elasticity. Comput Mech 64, 971–988 (2019). https://doi.org/10.1007/s00466-019-01690-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01690-7

Navigation