Skip to main content

Advertisement

Log in

Computational study on microstructure evolution and magnetic property of laser additively manufactured magnetic materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Additive manufacturing offers an unprecedented opportunity for the quick production of complex shaped parts directly from a powder precursor. But its application to functional materials in general and magnetic materials in particular is still at the very beginning. Here we present the first attempt to computationally study the microstructure evolution and magnetic properties of magnetic materials (e.g. Fe–Ni alloys) processed by selective laser melting (SLM). SLM process induced thermal history and thus the residual stress distribution in Fe–Ni alloys are calculated by finite element analysis (FEA). The evolution and distribution of the \(\gamma \)-Fe–Ni and \(\hbox {FeNi}_3\) phase fractions are predicted by using the temperature information from FEA and the output from CALculation of PHAse Diagrams (CALPHAD). Based on the relation between residual stress and magnetoelastic energy, magnetic properties of SLM processed Fe–Ni alloys (magnetic coercivity, remanent magnetization, and magnetic domain structure) are examined by micromagnetic simulations. The calculated coercivity is found to be in line with the experimentally measured values of SLM-processed Fe–Ni alloys. This computation study demonstrates a feasible approach for the simulation of additively manufactured magnetic materials by integrating FEA, CALPHAD, and micromagnetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Arnold HD, Elmen GW (1923) Permalloy, an alloy of remarkable magnetic properties. J Frankl Inst 195(5):621–632. https://doi.org/10.1016/S0016-0032(23)90114-6

    Article  Google Scholar 

  2. Kwiatkowski W, Tumanski S (1986) The permalloy magnetoresistive sensors-properties and applications. J Phys E Sci Instrum 19(7):502. https://doi.org/10.1088/0022-3735/19/7/002

    Article  Google Scholar 

  3. Ganz AG (1946) Applications of thin Permalloy tape in wide-band telephone and pulse transformers. AIEE Trans 65(4):177–183. https://doi.org/10.1109/T-AIEE.1946.5059326

    Google Scholar 

  4. Ripka P (2008) Sensors based on bulk soft magnetic materials: advances and challenges. J Magn Magn Mater 320(20):2466–2473. https://doi.org/10.1016/j.jmmm.2008.04.079

    Article  Google Scholar 

  5. Martin JH, Yahata BD, Hundley JM, Mayer JA, Schaedler TA, Pollock TM (2017) 3D printing of high-strength aluminium alloys. Nature 549(7672):365–369. https://doi.org/10.1038/nature23894

    Article  Google Scholar 

  6. Kobryn PA, Semiatin SL (2001) The laser additive manufacture of Ti–6Al–4V. JOM 53(9):40–42. https://doi.org/10.1007/s11837-001-0068-x

    Article  Google Scholar 

  7. Yan W, Ge W, Smith J, Lin S, Kafka OL, Lin F, Liu WK (2016) Multi-scale modeling of electron beam melting of functionally graded materials. Acta Mater 115:403–412. https://doi.org/10.1016/j.actamat.2016.06.022

    Article  Google Scholar 

  8. Yan W, Qian Y, Ma W, Zhou B, Shen Y, Lin F (2017) Modeling and experimental validation of the electron beam selective melting process. Engineering 3(5):701–707. https://doi.org/10.1016/J.ENG.2017.05.021

    Article  Google Scholar 

  9. Keller T, Lindwall G, Ghosh S, Ma L, Lane BM, Zhang F, Kattner UR, Lass EA, Heigel JC, Idell Y et al (2017) Application of finite element, phase-field, and CALPHAD-based methods to additive manufacturing of Ni-based superalloys. Acta Mater 139:244–253. https://doi.org/10.1016/j.actamat.2017.05.003

    Article  Google Scholar 

  10. Wang YM, Voisin T, McKeown JT, Ye J, Calta NP, Li Z, Zeng Z, Zhang Y, Chen W, Roehling TT et al (2018) Additively manufactured hierarchical stainless steels with high strength and ductility. Nat Mater 17:63–71. https://doi.org/10.1038/NMAT5021

    Article  Google Scholar 

  11. Johnson KL, Rodgers TM, Underwood OD, Madison JD, Ford KR, Whetten SR, Dagel DJ, Bishop JE (2018) Simulation and experimental comparison of the thermo-mechanical history and 3D microstructure evolution of 304L stainless steel tubes manufactured using LENS. Comput Mech 61(5):559–574. https://doi.org/10.1007/s00466-017-1516-y

    Article  MATH  Google Scholar 

  12. Zhang B, Fenineche N-E, Zhu L, Liao H, Coddet C (2012) Studies of magnetic properties of permalloy (Fe–30%Ni) prepared by SLM technology. J Magn Magn Mater 324(4):495–500. https://doi.org/10.1016/j.jmmm.2011.08.030

    Article  Google Scholar 

  13. Zhang B, Fenineche N-E, Liao H, Coddet C (2013) Microstructure and magnetic properties of Fe–Ni alloy fabricated by selective laser melting Fe/Ni mixed powders. J Mater Sci Technol 29(8):757–760. https://doi.org/10.1016/j.jmst.2013.05.001

    Article  Google Scholar 

  14. Zhang B, Fenineche N-E, Liao H, Coddet C (2013) Magnetic properties of in-situ synthesized \(\text{ FeNi }_3\) by selective laser melting Fe–80%Ni powders. J Magn Magn Mater 336:49–54. https://doi.org/10.1016/j.jmmm.2013.02.014

    Article  Google Scholar 

  15. Poirier E, Pinkerton FE, Kubic R, Mishra RK, Bordeaux N, Mubarok A, Lewis LH, Goldstein JI, Skomski R, Barmak K (2015) Intrinsic magnetic properties of L1\(_{0}\) FeNi obtained from meteorite NWA 6259. J Appl Phys 117(17):17E318. https://doi.org/10.1063/1.4916190

    Article  Google Scholar 

  16. Bordeaux N, Montes-Arango AM, Liu J, Barmak K, Lewis LH (2016) Thermodynamic and kinetic parameters of the chemical order-disorder transformation in \(\text{ L1 }_0\) FeNi (tetrataenite). Acta Mater 103:608–615. https://doi.org/10.1016/j.actamat.2015.10.042

    Article  Google Scholar 

  17. Moore JD, Klemm D, Lindackers D, Grasemann S, Träger R, Eckert J, Löber L, Scudino S, Katter M, Barcza A et al (2013) Selective laser melting of \(\text{ La(Fe Co, Si) }_{13}\) geometries for magnetic refrigeration. J Appl Phys 114(4):043907. https://doi.org/10.1063/1.4816465

    Article  Google Scholar 

  18. Garibaldi M, Ashcroft I, Lemke JN, Simonelli M, Hague R (2018) Effect of annealing on the microstructure and magnetic properties of soft magnetic Fe–Si produced via laser additive manufacturing. Scr Mater 142:121–125. https://doi.org/10.1016/j.scriptamat.2017.08.042

    Article  Google Scholar 

  19. Jhong KJ, Huang W-C, Lee WH (2016) Microstructure and magnetic properties of magnetic material fabricated by selective laser melting. Phys Procedia 83:818–824. https://doi.org/10.1016/j.phpro.2016.08.084

    Article  Google Scholar 

  20. Shishkovsky I, Saphronov V (2016) Peculiarities of selective laser melting process for permalloy powder. Mater Lett 171:208–211. https://doi.org/10.1016/j.matlet.2016.02.099

    Article  Google Scholar 

  21. Mikler CV, Chaudhary V, Soni V, Gwalani B, Ramanujan RV, Banerjee R (2017) Tuning the phase stability and magnetic properties of laser additively processed Fe–30at%Ni soft magnetic alloys. Mater Lett 199:88–92. https://doi.org/10.1016/j.matlet.2017.04.054

    Article  Google Scholar 

  22. Mikler CV, Chaudhary V, Borkar T, Soni V, Choudhuri D, Ramanujan RV, Banerjee R (2017) Laser additive processing of Ni–Fe–V and Ni–Fe–Mo permalloys: microstructure and magnetic properties. Mater Lett 192:9–11. https://doi.org/10.1016/j.matlet.2017.01.059

    Article  Google Scholar 

  23. Mikler CV, Chaudhary V, Borkar T, Soni V, Jaeger D, Chen X, Contieri R, Ramanujan RV, Banerjee R (2017) Laser additive manufacturing of magnetic materials. JOM 69(3):532–543. https://doi.org/10.1007/s11837-017-2257-2

    Article  Google Scholar 

  24. Kustas AB, Susan DF, Johnson KL, Whetten SR, Rodriguez MA, Dagel DJ, Michael JR, Keicher DM, Argibay N (2018) Characterization of the Fe–Co–1.5V soft ferromagnetic alloy processed by Laser Engineered Net Shaping (LENS). Addit Manuf 21:41–52. https://doi.org/10.1016/j.addma.2018.02.006

    Article  Google Scholar 

  25. Jaćimović J, Binda F, Herrmann LG, Greuter F, Genta J, Calvo M, Tomše T, Simon RA (2017) Net shape 3D printed NdFeB permanent magnet. Adv Eng Mater 19(8):1700098. https://doi.org/10.1002/adem.201700098

    Article  Google Scholar 

  26. White EMH, Kassen AG, Simsek E, Tang W, Ott RT, Anderson IE (2017) Net shape processing of alnico magnets by additive manufacturing. IEEE Trans Magn 53(11):1–6. https://doi.org/10.1109/TMAG.2017.2711965

    Article  Google Scholar 

  27. Popov V, Koptyug A, Radulov I, Maccari F, Muller G (2018) Prospects of additive manufacturing of rare-earth and non-rare-earth permanent magnets. Proc Manuf 21:100–108. https://doi.org/10.1016/j.promfg.2018.02.199

    Google Scholar 

  28. Li L, Tirado A, Nlebedim IC, Rios O, Post B, Kunc V, Lowden RR, Lara-Curzio E, Fredette R, Ormerod J et al (2016) Big area additive manufacturing of high performance bonded NdFeB magnets. Sci Rep 6:36212. https://doi.org/10.1038/srep36212

    Article  Google Scholar 

  29. Paranthaman MP, Shafer CS, Elliott AM, Siddel DH, McGuire MA, Springfield RM, Martin J, Fredette R, Ormerod J (2016) Binder jetting: a novel NdFeB bonded magnet fabrication process. JOM 68(7):1978–1982. https://doi.org/10.1007/s11837-016-1883-4

    Article  Google Scholar 

  30. Li L, Post B, Kunc V, Elliott AM, Paranthaman MP (2017) Additive manufacturing of near-net-shape bonded magnets: prospects and challenges. Scr Mater 135:100–104. https://doi.org/10.1016/j.scriptamat.2016.12.035

    Article  Google Scholar 

  31. Huber C, Abert C, Bruckner F, Groenefeld M, Schuschnigg S, Teliban I, Vogler C, Wautischer G, Windl R, Suess D (2017) 3D printing of polymer-bonded rare-earth magnets with a variable magnetic compound fraction for a predefined stray field. Sci Rep 7(1):9419. https://doi.org/10.1038/s41598-017-09864-0

    Article  Google Scholar 

  32. Huber C, Abert C, Bruckner F, Pfaff C, Kriwet J, Groenefeld M, Teliban I, Vogler C, Suess D (2017) Topology optimized and 3D printed polymer-bonded permanent magnets for a predefined external field. J Appl Phys 122(5):053904. https://doi.org/10.1063/1.4997441

    Article  Google Scholar 

  33. Smith J, Xiong W, Yan W, Lin S, Cheng P, Kafka OL, Wagner GJ, Cao J, Liu WK (2016) Linking process, structure, property, and performance for metal-based additive manufacturing: computational approaches with experimental support. Comput Mech 57(4):583–610. https://doi.org/10.1007/s00466-015-1240-4

    Article  MATH  Google Scholar 

  34. Markl M, Körner C (2016) Multiscale modeling of powder bed-based additive manufacturing. Annu Rev Mater Res 46:93–123. https://doi.org/10.1146/annurev-matsci-070115-032158

    Article  Google Scholar 

  35. Yan W, Lin S, Kafka OL, Lian Y, Yu C, Liu Z, Yan J, Wolff S, Wu H, Ndip-Agbor E et al (2018) Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing. Comput Mech 61(5):521–541. https://doi.org/10.1007/s00466-018-1539-z

    Article  MATH  Google Scholar 

  36. Yang YP, Jamshidinia M, Boulware P, Kelly SM (2018) Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process. Comput Mech 1–17. https://doi.org/10.1007/s00466-017-1528-7

  37. ABAQUS (2017) Dassault Systemes Simulia Corporation

  38. Cacciamani G, De Keyzer J, Ferro R, Klotz UE, Lacaze J, Wollants P (2006) Critical evaluation of the Fe–Ni, Fe–Ti and Fe–Ni–Ti alloy systems. Intermetallics 14(10–11):1312–1325. https://doi.org/10.1016/j.intermet.2005.11.028

    Article  Google Scholar 

  39. Smith J, Xiong W, Cao J, Liu WK (2016) Thermodynamically consistent microstructure prediction of additively manufactured materials. Comput Mech 57(3):359–370. https://doi.org/10.1007/s00466-015-1243-1

    Article  MATH  Google Scholar 

  40. Costa L, Vilar R, Reti T, Deus AM (2005) Rapid tooling by laser powder deposition: process simulation using finite element analysis. Acta Mater 53(14):3987–3999. https://doi.org/10.1016/j.actamat.2005.05.003

    Article  Google Scholar 

  41. Li Y, Gu D (2014) Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater Des 63:856–867. https://doi.org/10.1016/j.matdes.2014.07.006

    Article  Google Scholar 

  42. Mercelis P, Kruth J-P (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12(5):254–265. https://doi.org/10.1108/13552540610707013

    Article  Google Scholar 

  43. Shu YC, Lin MP, Wu KC (2004) Micromagnetic modeling of magnetostrictive materials under intrinsic stress. Mech Mater 36(10):975–997. https://doi.org/10.1016/j.mechmat.2003.04.004

    Article  Google Scholar 

  44. Lukas HL, Fries SG, Sundman B (2007) Computational thermodynamics: the Calphad method. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  45. Perron A, Roehling JD, Turchi PEA, Fattebert J-L, McKeown JT (2018) Matching time and spatial scales of rapid solidification: dynamic TEM experiments coupled to CALPHAD-informed phase-field simulations. Modell Simul Mater Sci Eng 26(1):014002. https://doi.org/10.1088/1361-651X/aa9a5b

    Article  Google Scholar 

  46. Swartzendruber LJ, Itkin VP, Alcock CB (1991) The Fe–Ni (iron–nickel) system. J Phase Equilib 12(3):288–312. https://doi.org/10.1007/BF02649918

    Article  Google Scholar 

  47. Andersson J-O, Helander T, Höglund L, Shi P, Sundman B (2002) Thermo-Calc & DICTRA, computational tools for materials science. Calphad 26(2):273–312. https://doi.org/10.1016/S0364-5916(02)00037-8

    Article  Google Scholar 

  48. Gulliver GH (1913) The quantitative effect of rapid cooling upon the constitution of binary alloys. J Inst Met 9(1):120–157

    Google Scholar 

  49. Scheil E (1942) Remarks on the crystal layer formation. Z Metallkd 34:70

    Google Scholar 

  50. Chen L-Q (2002) Phase-field models for microstructure evolution. Annu Rev Mater Res 32(1):113–140. https://doi.org/10.1146/annurev.matsci.32.112001.132041

    Article  Google Scholar 

  51. Fidler J, Schrefl T (2000) Micromagnetic modelling-the current state of the art. J Phys D Appl Phys 33(15):R135. https://doi.org/10.1088/0022-3727/33/15/201

    Article  Google Scholar 

  52. Kronmüller H, Fähnle M (2003) Micromagnetism and the microstructure of ferromagnetic solids. Cambridge University Press, Cambridge

    Google Scholar 

  53. Yi M, Gutfleisch O, Xu B-X (2016) Micromagnetic simulations on the grain shape effect in Nd–Fe–B magnets. J Appl Phys 120(3):033903. https://doi.org/10.1063/1.4958697

    Article  Google Scholar 

  54. Agramunt-Puig S, Del-Valle N, Navau C, Sanchez A (2014) Controlling vortex chirality and polarity by geometry in magnetic nanodots. Appl Phys Lett 104(1):012407. https://doi.org/10.1063/1.4861423

    Article  Google Scholar 

  55. Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7(2):149–154. https://doi.org/10.1093/comjnl/7.2.149

    Article  MathSciNet  MATH  Google Scholar 

  56. Polak E, Ribiere G (1969) Note sur la convergence de méthodes de directions conjuguées. Rev Française D’informatique et de Recherche Opérationnelle. Série Rouge 3(16):35–43. https://doi.org/10.1051/m2an/196903R100351

    MATH  Google Scholar 

  57. Donahue MJ, Porter DG (2017) OOMMF software package. https://doi.org/10.4231/D3XS5JJ23

    Google Scholar 

  58. Gilbert TL (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn 40(6):3443–3449. https://doi.org/10.1109/TMAG.2004.836740

    Article  MathSciNet  Google Scholar 

  59. Yi M, Xu B-X (2014) A constraint-free phase field model for ferromagnetic domain evolution. Proc R Soc A 470(2171):20140517. https://doi.org/10.1098/rspa.2014.0517

    Article  Google Scholar 

  60. Yi M, Zhang H, Gutfleisch O, Xu B-X (2017) Multiscale examination of strain effects in Nd–Fe–B permanent magnets. Phys Rev Appl 8(1):014011. https://doi.org/10.1103/PhysRevApplied.8.014011

    Article  Google Scholar 

  61. Bonin R, Schneider ML, Silva TJ, Nibarger JP (2005) Dependence of magnetization dynamics on magnetostriction in NiFe alloys. J Appl Phys 98(12):123904. https://doi.org/10.1063/1.2143121

    Article  Google Scholar 

  62. Amidror I (2002) Scattered data interpolation methods for electronic imaging systems: a survey. J Electron Imaging 11(2):157–176. https://doi.org/10.1117/1.1455013

    Article  Google Scholar 

  63. Xiong W, Zhang H, Vitos L, Selleby M (2011) Magnetic phase diagram of the Fe–Ni system. Acta Mater 59(2):521–530. https://doi.org/10.1016/j.actamat.2010.09.055

    Article  Google Scholar 

Download references

Acknowledgements

The support from the German Science Foundation (DFG YI 165/1-1 and DFG XU 121/7-1), the Profile Area From Material to Product Innovation—PMP (TU Darmstadt), the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant agreement No 743116), and the LOEWE research cluster RESPONSE (Hessen, Germany) is acknowledged. The authors also greatly appreciate their access to the Lichtenberg High Performance Computer of Technische Universität Darmstadt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, M., Xu, BX. & Gutfleisch, O. Computational study on microstructure evolution and magnetic property of laser additively manufactured magnetic materials. Comput Mech 64, 917–935 (2019). https://doi.org/10.1007/s00466-019-01687-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01687-2

Keywords

Navigation