Skip to main content
Log in

Hybrid High-Order methods for finite deformations of hyperelastic materials

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We devise and evaluate numerically Hybrid High-Order (HHO) methods for hyperelastic materials undergoing finite deformations. The HHO methods use as discrete unknowns piecewise polynomials of order \(k\ge 1\) on the mesh skeleton, together with cell-based polynomials that can be eliminated locally by static condensation. The discrete problem is written as the minimization of a broken nonlinear elastic energy where a local reconstruction of the displacement gradient is used. Two HHO methods are considered: a stabilized method where the gradient is reconstructed as a tensor-valued polynomial of order k and a stabilization is added to the discrete energy functional, and an unstabilized method which reconstructs a stable higher-order gradient and circumvents the need for stabilization. Both methods satisfy the principle of virtual work locally with equilibrated tractions. We present a numerical study of the two HHO methods on test cases with known solution and on more challenging three-dimensional test cases including finite deformations with strong shear layers and cavitating voids. We assess the computational efficiency of both methods, and we compare our results to those obtained with an industrial software using conforming finite elements and to results from the literature. The two HHO methods exhibit robust behavior in the quasi-incompressible regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ball JM (1976) Convexity conditions and existence theorems in nonlinear elasticity. Arch Ration Mech Anal 63(4):337–403

    Article  MathSciNet  MATH  Google Scholar 

  2. Ball JM (1982) Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos Trans R Soc Lond Ser A 306(1496):557–611

    Article  MathSciNet  MATH  Google Scholar 

  3. Beirão da Veiga L, Lovadina C, Mora D (2015) A virtual element method for elastic and inelastic problems on polytope meshes. Comput Methods Appl Mech Eng 295:327–346

    Article  MathSciNet  Google Scholar 

  4. Boffi D, Botti M, Di Pietro DA (2016) A nonconforming high-order method for the Biot problem on general meshes. SIAM J Sci Comput 38(3):A1508–A1537

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  6. Botti M, Di Pietro DA, Sochala P (2017) A hybrid high-order method for nonlinear elasticity. SIAM J Numer Anal 55(6):2687–2717

    Article  MathSciNet  MATH  Google Scholar 

  7. Carstensen C, Hellwig F (2016) Low-order discontinuous Petrov-Galerkin finite element methods for linear elasticity. SIAM J Numer Anal 54(6):3388–3410

    Article  MathSciNet  MATH  Google Scholar 

  8. Chi H, Beirão da Veiga L, Paulino GH (2017) Some basic formulations of the virtual element method (VEM) for finite deformations. Comput Methods Appl Mech Eng 318:148–192

    Article  MathSciNet  Google Scholar 

  9. Ciarlet PG (1988) Mathematical elasticity. Vol. I, volume 20 of studies in mathematics and its applications. Three-dimensional elasticity. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  10. Cicuttin M, Di Pietro DA, Ern A (2017) Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming. J Comput Appl Math. https://doi.org/10.1016/j.cam.2017.09.017

  11. Cockburn B, Di Pietro DA, Ern A (2016) Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math Model Numer Anal 50(3):635–650

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn B, Gopalakrishnan J, Lazarov R (2009) Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J Numer Anal 47(2):1319–1365

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn B, Gopalakrishnan J, Nguyen NC, Peraire J, Sayas F-J (2011) Analysis of HDG methods for Stokes flow. Math Comput 80(274):723–760

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn B, Schötzau D, Wang J (2006) Discontinuous Galerkin methods for incompressible elastic materials. Comput Methods Appl Mech Eng 195(25–28):3184–3204

    Article  MathSciNet  MATH  Google Scholar 

  15. Di Pietro DA, Droniou J, Ern A (2015) A discontinuous-skeletal method for advection-diffusion-reaction on general meshes. SIAM J Numer Anal 53(5):2135–2157

    Article  MathSciNet  MATH  Google Scholar 

  16. Di Pietro DA, Droniou J, Manzini G (2018) Discontinuous Skeletal Gradient Discretisation Methods on polytopal meshes. J Comput Phys 355:397–425. https://doi.org/10.1016/j.jcp.2017.11.018

  17. Di Pietro DA, Ern A (2015) A hybrid high-order locking-free method for linear elasticity on general meshes. Comput Methods Appl Mech Eng 283:1–21

    Article  MathSciNet  MATH  Google Scholar 

  18. Di Pietro DA, Ern A, Lemaire S (2014) An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput Methods Appl Math 14(4):461–472

    Article  MathSciNet  MATH  Google Scholar 

  19. Di Pietro DA, Ern A, Lemaire S (2016) A review of hybrid high-order methods: formulations, computational aspects, comparison with other methods. In: Building bridges: connections and challenges in modern approaches to numerical partial differential equations, volume 114 of Lecture Notes in Computational Science and Engineering. Springer, pp 205–236 [Cham]

  20. Di Pietro DA, Ern A, Linke A, Schieweck F (2016) A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput Methods Appl Mech Eng 306:175–195

    Article  MathSciNet  Google Scholar 

  21. Di Pietro DA, Krell S (2017) A hybrid high-order method for the steady incompressible Navier-Stokes problem. J Sci Comput. https://doi.org/10.1007/s10915-017-0512-x

    MATH  Google Scholar 

  22. Droniou J, Lamichhane BP (2015) Gradient schemes for linear and non-linear elasticity equations. Numer Math 129(2):251–277

    Article  MathSciNet  MATH  Google Scholar 

  23. Dunavant DA (1985) High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int J Numer Methods Eng 21(6):1129–1148

    Article  MathSciNet  MATH  Google Scholar 

  24. Electricité de France (1989–2017) Finite element \(\mathbf{}code_aster\), structures and thermomechanics analysis for studies and research. Open source on http://www.code-aster.org

  25. Eymard R, Guichard C (2017) Discontinuous Galerkin gradient discretisations for the approximation of second-order differential operators in divergence form. Comput Appl Math. https://doi.org/10.1007/s40314-017-0558-2

  26. Hansbo P, Larson MG (2002) Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput Methods Appl Mech Eng 191(17–18):1895–1908

    Article  MathSciNet  MATH  Google Scholar 

  27. Helfer T, Michel B, Proix J-M, Salvo M, Sercombe J, Casella M (2015) Introducing the open-source mfront code generator: Application to mechanical behaviours and material knowledge management within the PLEIADES fuel element modelling platform. Comput Math Appl 70(5):994–1023

    Article  MathSciNet  Google Scholar 

  28. John L, Neilan M, Smears I (2016) Stable discontinuous galerkin fem without penalty parameters. In: Karasözen B, Manguoğlu M, Tezer-Sezgin M, Göktepe S, Uğur Ö (eds) Numerical mathematics and advanced applications ENUMATH 2015. Springer, Berlin, pp 165–173

    Chapter  Google Scholar 

  29. Kabaria H, Lew AJ, Cockburn B (2015) A hybridizable discontinuous Galerkin formulation for non-linear elasticity. Comput Methods Appl Mech Eng 283:303–329

    Article  MathSciNet  MATH  Google Scholar 

  30. Krämer J, Wieners C, Wohlmuth B, Wunderlich L (2016) A hybrid weakly nonconforming discretization for linear elasticity. Proc Appl Math Mech 16(1):849–850

    Article  Google Scholar 

  31. Lehrenfeld C (2010) Hybrid discontinuous Galerkin methods for solving incompressible flow problems. Ph.D. thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen

  32. Lew A, Neff P, Sulsky D, Ortiz M (2004) Optimal BV estimates for a discontinuous Galerkin method for linear elasticity. AMRX Appl Math Res Express 2004(3):73–106

    Article  MathSciNet  MATH  Google Scholar 

  33. Lian Y, Li Z (2011) A numerical study on cavitation in nonlinear elasticity—defects and configurational forces. Math Models Methods Appl Sci 21(12):2551–2574

    Article  MathSciNet  MATH  Google Scholar 

  34. Nguyen NC, Peraire J (2012) Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. J Comput Phys 231(18):5955–5988

    Article  MathSciNet  MATH  Google Scholar 

  35. Noels L, Radovitzky R (2006) A general discontinuous Galerkin method for finite hyperelasticity. Formulation and numerical applications. Int J Numer Methods Eng 68(1):64–97

    Article  MathSciNet  MATH  Google Scholar 

  36. Ogden RW (1997) Non-linear elastic deformations. Dover Publication, New-York

    Google Scholar 

  37. Soon S-C (2008) Hybridizable discontinuous Galerkin method for solid mechanics. Ph.D. thesis, University of Minnesota

  38. Soon S-C, Cockburn B, Stolarski HK (2009) A hybridizable discontinuous Galerkin method for linear elasticity. Int J Numer Methods Eng 80(8):1058–1092

    Article  MathSciNet  MATH  Google Scholar 

  39. ten Eyck A, Celiker F, Lew A (2008) Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: analytical estimates. Comput Methods Appl Mech Eng 197(33–40):2989–3000

    Article  MathSciNet  MATH  Google Scholar 

  40. ten Eyck A, Celiker F, Lew A (2008) Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity: motivation, formulation, and numerical examples. Comput Methods Appl Mech Eng 197(45–48):3605–3622

    Article  MathSciNet  MATH  Google Scholar 

  41. ten Eyck A, Lew A (2006) Discontinuous Galerkin methods for non-linear elasticity. Int J Numer Methods Eng 67(9):1204–1243

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang C, Wang J, Wang R, Zhang R (2016) A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation. J Comput Appl Math 307:346–366

    Article  MathSciNet  MATH  Google Scholar 

  43. Wriggers P, Reddy BD, Rust W, Hudobivnik B (2017) Efficient virtual element formulations for compressible and incompressible finite deformations. Comput Mech 60(2):253–268. https://doi.org/10.1007/s00466-017-1405-4

    Article  MathSciNet  MATH  Google Scholar 

  44. Wulfinghoff S, Bayat HR, Alipour A, Reese S (2017) A low-order locking-free hybrid discontinuous Galerkin element formulation for large deformations. Comput Methods Appl Mech Eng 323:353–372

    Article  MathSciNet  Google Scholar 

  45. Xu X, Henao D (2011) An efficient numerical method for cavitation in nonlinear elasticity. Math Models Methods Appl Sci 21(8):1733–1760

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Pignet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, M., Ern, A. & Pignet, N. Hybrid High-Order methods for finite deformations of hyperelastic materials. Comput Mech 62, 909–928 (2018). https://doi.org/10.1007/s00466-018-1538-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1538-0

Keywords

Navigation