Skip to main content
Log in

An extension of shape sensitivity analysis to an immersed boundary method based on Cartesian grids

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Gradient-based shape optimization processes of mechanical components require the gradients (sensitivity) of the magnitudes of interest to be calculated with sufficient accuracy. The aim of this study was to develop algorithms for the calculation of shape sensitivities considering geometric representation by parametric surfaces (i.e. NURBS or T-splines) using 3D Cartesian h-adapted meshes independent of geometry. A formulation of shape sensitivities was developed for an environment based on Cartesian meshes independent of geometry, which implies, for instance, the need to take into account the special treatment of boundary conditions imposed in non body-fitted meshes. The immersed boundary framework required to implement new methods of velocity field generation, which have a primary role in the integration of both the theoretical concepts and the discretization tools in shape design optimization. Examples of elastic problems with three-dimensional components are given to demonstrate the efficiency of the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Abel JF, Shephard MS (1979) An algorithm for multipoint constraints in finite element analysis. Int J Numer Methods Eng 14(3):464–467

    Article  MATH  Google Scholar 

  2. Akgün MA, Garcelon GH, Haftka RT (2001) Fast exact linear and nonlinear structural reanalysis and the sherman-morrison-woodbury formulas. Int J Numer Methods Eng 50(7):1587–1606

    Article  MATH  Google Scholar 

  3. Arora JS (1993) An exposition of the material derivative approach for structural shape sensitivity analysis. Comput Methods Appl Mech Eng 105(1):41–62

    Article  MathSciNet  MATH  Google Scholar 

  4. Arora JS, Lee TH, Cardoso JB (1992) Structural shape sensitivity analysis: relationship between material derivative and control volume approaches. AIAA J 30(6):1638–1648

    Article  MATH  Google Scholar 

  5. Belegundu D, Zhang S, Manicka Y, Salagame R (1991) The natural approach for shape optimization with mesh distortion control. Technical report. Penn State University, State College

    Google Scholar 

  6. Bennett JA, Botkin ME (1985) Structural shape optimization with geometric problem description and adaptive mesh refinement. AIAA J 23(3):459–464

    Article  Google Scholar 

  7. Bischof C, Carle A, Khademi P, Mauer A (1996) The adifor 2.0 system for the automatic differentiation of fortran 77 programs. IEEE Comput Sci Eng 3(3):18–32

    Article  Google Scholar 

  8. Braibant V, Fleury C (1984) Shape optimal design using b-splines. Comput Methods Appl Mech Eng 44(3):247–267

    Article  MATH  Google Scholar 

  9. Bugeda G, Oliver J (1993) A general methodology for structural shape optimization problems using automatic adaptive remeshing. Int J Numer Methods Eng 36(18):3161–3185

    Article  MATH  Google Scholar 

  10. Cho S, Ha SH (2009) Isogeometric shape design optimization: exact geometry and enhanced sensitivity. Struct Multidiscip Optim 38(1):53–70

    Article  MathSciNet  MATH  Google Scholar 

  11. Choi K, Kim N (2005) Structural sensitivity analysis and optimization, mechanical engineering series, vol 1. Springer, Berlin, Heidelberg

    Google Scholar 

  12. Choi KK, Chang KH (1994) A study of design velocity field computation for shape optimal design. Finite Elem Anal Des 15(4):317–341

    Article  MATH  Google Scholar 

  13. Choi KK, Duan W (2000) Design sensitivity analysis and shape optimization of structural components with hyperelastic material. Comput Methods Appl Mech Eng 187(1–2):219–243

    Article  MATH  Google Scholar 

  14. Choi KK, Twu SL (1989) Equivalence of continuum and discrete methods of shape design sensitivity analysis. AIAA J 27(10):1419–1424

    Article  MathSciNet  Google Scholar 

  15. Choi MJ, Cho S (2014) Isogeometric shape design sensitivity analysis of stress intensity factors for curved crack problems. Comput Methods Appl Mech Eng 279:469–496

    Article  MathSciNet  MATH  Google Scholar 

  16. Chowdhury MS, Song C, Gao W (2014) Shape sensitivity analysis of stress intensity factors by the scaled boundary finite element method. Eng Fract Mech 116:13–30

    Article  Google Scholar 

  17. Doctor LJ, Torborg JG (1981) Display techniques for octree-encoded objects. IEEE Comput Graph Appl 1(3):29–38

    Article  Google Scholar 

  18. El-Sayed MEM, Zumwalt KW (1991) Efficient design sensitivity derivatives for multi-load case structures as an integrated part of finite element analysis. Comput Struct 40(6):1461–1467

    Article  MATH  Google Scholar 

  19. Escobar JM, Montenegro R, Rodríguez E, Cascón JM (2014) The meccano method for isogeometric solid modeling and applications. Eng Comput 30(3):331–343

    Article  Google Scholar 

  20. Farhat C, Lacour C, Rixen D (1998) Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm. Int J Numer Methods Eng 43(6):997–1016

    Article  MATH  Google Scholar 

  21. Fuenmayor FJ, Domínguez J, Giner E, Oliver JL (1997) Calculation of the stress intensity factor and estimation of its error by a shape sensitivity analysis. Fatigue Fract Eng Mater Struct 20(5):813–828

    Article  Google Scholar 

  22. Fuenmayor FJ, Oliver JL, Ródenas JJ (1997) Extension of the Zienkiewicz-Zhu error estimator to shape sensitivity analysis. Int J Numer Methods Eng 40(8):1413–1433

    Article  Google Scholar 

  23. Gil AJ, Arranz-Carreño A, Bonet J, Hassan O (2010) The immersed structural potential method for haemodynamic applications. J Comput Phys 229(22):8613–8641

    Article  MathSciNet  MATH  Google Scholar 

  24. Giner E, Fuenmayor FJ, Besa AJ, Tur M (2002) An implementation of the stiffness derivative method as a discrete analytical sensitivity analysis and its application to mixed mode in LEFM. Eng Fract Mech 69(18):2051–2071

    Article  Google Scholar 

  25. Griewank A, Juedes D, Utke J (1996) ADOL-C, a package for the automatic differentiation of algorithms written in C/C++. ACM Trans Math Softw (TOMS) 22(2):131–167

    Article  MATH  Google Scholar 

  26. Ha SH, Choi K, Cho S (2010) Numerical method for shape optimization using T-spline based isogeometric method. Struct Multidiscip Optim 42(3):417–428

    Article  MATH  Google Scholar 

  27. Haftka RT (1993) Semi-analytical static nonlinear structural sensitivity analysis. AIAA J 31(7):1307–1312

    Article  MATH  Google Scholar 

  28. Haftka RT, Adelman H (1989) Recent developments in structural sensitivity analysis. Struct Optim 1(3):137–151

    Article  Google Scholar 

  29. Haftka RT, Barthelemy B (1989) Discretization methods and structural optimization—procedures and applications. In: Proceedings of a GAMM-Seminar October 5–7, 1988, Siegen, FRG, Springer, Berlin, Heidelberg, chap On the Accuracy of shape sensitivity derivatives, pp 136–144

  30. Haslinger J, Jedelsky D (1996) Genetic algorithms and fictitious domain based approaches in shape optimization. Struc Optim 12:257–264

    Article  Google Scholar 

  31. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

    Article  MathSciNet  MATH  Google Scholar 

  32. Iman MH (1982) Three-dimensional shape optimization. Int J Numer Methods Eng 18(5):661–673

    Article  Google Scholar 

  33. Jackins CL, Tanimoto SL (1980) Oct-tree and their use in representing three-dimensional objects. Comput Graph Image Process 14(3):249–270

    Article  Google Scholar 

  34. Kanninen MF, Popelar CH (1985) Advanced fracture mechanics. Oxford Engineering Science Series. Oxford University Press, Oxford

    MATH  Google Scholar 

  35. van Keulen F, Haftka R, Kim N (2005) Review of options for structural design sensitivity analysis. Part I: linear systems. Comput Methods Appl Mech Eng 194(30–33):3213–3243

    Article  MATH  Google Scholar 

  36. Kibsgaard S (1992) Sensitivity analysis-the basis for optimization. Int J Numer Methods Eng 34(3):901–932

    Article  Google Scholar 

  37. Kiendl J, Schmidt R, Wüchner R, Bletzinger KU (2014) Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting. Comput Methods Appl Mech Eng 274:148–167

    Article  MathSciNet  MATH  Google Scholar 

  38. Kirsch U (2002) Design-oriented analysis: a unified approach. Springer Netherlands, Dordrecht

    MATH  Google Scholar 

  39. Kunisch K, Peichl G (1996) Numerical gradients for shape optimization based on embedding domain techniques. Comput Optim 18:95–114

    Article  MathSciNet  MATH  Google Scholar 

  40. Lee BY (1996) Consideration of body forces in axisymmetric design sensitivity analysis using the bem. Comput Struct 61(4):587–596

    Article  MATH  Google Scholar 

  41. Lee BY (1997) Direct differentiation formulation for boundary element shape sensitivity analysis of axisymmetric elastic solids. Int J Solids Struct 34(1):99–112

    Article  MATH  Google Scholar 

  42. Li FZ, Shih CF, Needleman A (1985) A comparison of methods for calculating energy release rates. Eng Fract Mech 21(2):405–421

    Article  Google Scholar 

  43. Li K, Qian X (2011) Isogeometric analysis and shape optimization via boundary integral. Comput Aided Des 43(11):1427–1437

    Article  Google Scholar 

  44. Lian H, Bordas SPA, Sevilla R, Simpson RN (2012) Recent developments in the integration of computer aided design and analysis. Comput Technol Rev 6:1–36

    Article  Google Scholar 

  45. Lian H, Kerfriden P, Bordas SPA (2016) Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity. Int J Numer Methods Eng 106(12):972–1017

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu L, Zhang Y, Hughes TJR, Scott MA, Sederberg TW (2014) Volumetric T-spline construction using boolean operations. Eng Comput 30(4):425–439

    Article  Google Scholar 

  47. Liu WK, Tang S (2007) Mathematical foundations of the immersed finite element method. Comput Mech 39(3):211–222

    Article  MathSciNet  MATH  Google Scholar 

  48. Liu WK, Liu Y, Darell D, Zhang L, Wang XS, Fukui Y, Patankar N, Zhang Y, Bajaj C, Lee J, Hong J, Chen X, Hsu H (2006) Immersed finite element method and its applications to biological systems. Comput Methods Appl Mech Eng 195(13):1722–1749

    Article  MathSciNet  MATH  Google Scholar 

  49. Marco O, Sevilla R, Zhang Y, Ródenas JJ, Tur M (2015) Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. Int J Numer Methods Eng 103:445–468

    Article  MathSciNet  MATH  Google Scholar 

  50. Marco O, Ródenas JJ, Navarro-Jiménez JM, Tur M (2017) Robust h-adaptive meshing strategy considering exact arbitrary CAD geometries in a Cartesian grid framework. Comput Struct 193:87–109

    Article  Google Scholar 

  51. Meagher D (1980) Octree encoding: a new technique for the representation, manipulation and display of arbitrary 3-D objects by computer. Tech. Rep. IPL-TR-80-11 I, Rensselaer Polytechnic Institute

  52. Moita JS, Infanta J, Mota CM (2000) Sensitivity analysis and optimal design of geometrically non-linear laminated plates and shells. Comput Struct 76(1–3):407–420

    Article  Google Scholar 

  53. Nadal E (2014) Cartesian grid FEM (cgFEM): high performance h-adaptive FE analysis with efficient error control. Application to structural shape optimization. Ph.D. Thesis. Universitat Politècnica de València

  54. Nadal E, Ródenas JJ, Albelda J, Tur M, Tarancón JE, Fuenmayor FJ (2013) Efficient finite element methodology based on cartesian grids: application to structural shape optimization. Abstract and Applied Analysis 2013

  55. Navarrina F, López-Fontán S, Colominas I, Bendito E, Casteleiro M (2000) High order shape design sensitivities: a unified approach. Comput Methods Appl Mech Eng 188(4):681–696

    Article  MATH  Google Scholar 

  56. Neittaanmäki P, Salmenjoki K (1989) Comparison of various techniques for shape design sensitivity analysis. In: Computer aided optimum design of structures: recent advances. Springer, Berlin, Heidelberg, pp 367–377

  57. Nguyen VP, Anitescu C, Bordas SPA, Rabczuk T (2015) Isogeometric analysis: an overview and computer implementation aspects. Math Comput Simul 117:89–116

    Article  MathSciNet  Google Scholar 

  58. Ozaki I, Kimura F, Berz M (1995) Higher-order sensitivity analysis of finite element method by automatic differentiation. Comput Mech 16(4):223–234

    Article  MATH  Google Scholar 

  59. Pandey PC, Bakshi P (1999) Analytical response sensitivity computation using hybrid finite elements. Comput Struct 71(5):525–534

    Article  MATH  Google Scholar 

  60. Peskin CS (1977) Numerical analysis of blood flow in the heart. J Comput Phys 25:220–252

    Article  MathSciNet  MATH  Google Scholar 

  61. Phelan DG, Haber RB (1989) Sensitivity analysis of linear elastic systems using domain parametrization and a mixed mutual energy principle. Comput Methods Appl Mech Eng 77(1–2):31–59

    Article  MathSciNet  MATH  Google Scholar 

  62. Piegl L, Tiller W (1995) The NURBS book. Springer, New York

    Book  MATH  Google Scholar 

  63. Poldneff MJ, Rai IS, Arora JS (1993) Implementation of design sensitivity analysis for nonlinear structures. AIAA J 31(11):2137–2142

    Article  MATH  Google Scholar 

  64. Qian X (2010) Full analytical sensitivities in NURBS based isogeometric shape optimization. Comput Methods Appl Mech Eng 199(29–32):2059–2071

    Article  MathSciNet  MATH  Google Scholar 

  65. Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35(2):379–386

    Article  Google Scholar 

  66. Ródenas JJ (2001) Error de Discretización en el Cálculo de Sensibilidades mediante el Método de los Elementos Finitos. Ph.D. Thesis

  67. Ródenas JJ, Fuenmayor FJ, Tarancón JE (2003) A numerical methodology to assess the quality of the design velocity field computation methods in shape sensitivity analysis. Int J Numer Methods Eng 59(13):1725–1747

    Article  MATH  Google Scholar 

  68. Rodenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int J Numer Methods Eng 70(6):705–727

    Article  MATH  Google Scholar 

  69. Ródenas JJ, Bugeda G, Albelda J, Oñate E (2011) On the need for the use of error-controlled finite element analyses in structural shape optimization processes. Int J Numer Methods Eng 87(11):1105–1126

    Article  MATH  Google Scholar 

  70. Rogers DF (2001) An introduction to NURBS: with historical perspective. Elsevier, London

    Google Scholar 

  71. Schramm U, Pilkey WW (1993) The coupling of geometric descriptions and finite elements using NURBs a study in shape optimization. Finite Elem Anal Des 15(1):11–34

    Article  MATH  Google Scholar 

  72. Sevilla R, Fernández-Méndez S, Huerta A (2011) 3D-NURBS-enhanced finite element method (NEFEM). Int J Numer Methods Eng 88(2):103–125

    Article  MathSciNet  MATH  Google Scholar 

  73. Sevilla R, Fernández-Méndez S, Huerta A (2011) NURBS-enhanced finite element method (NEFEM): a seamless bridge between CAD and FEM. Arch Comput Methods Eng 18(4):441–484

    Article  MathSciNet  MATH  Google Scholar 

  74. Shiriaev D, Griewank A (1996) ADOL-F: automatic differentiation of fortran codes. Comput Differ Tech Appl Tools (SIAM) 1:375–384

    MATH  Google Scholar 

  75. Shivakumar KN, Raju IS (1992) An equivalent domain integral method for three-dimensional mixed-mode fracture problems. Eng Fract Mech 42(6):935–959

    Article  Google Scholar 

  76. Silva CAC, Bittencourt ML (2007) Velocity fields using NURBS with distortion control for structural shape optimization. Struct Multidiscip Optim 33(2):147–159

    Article  Google Scholar 

  77. Tur M, Albelda J, Nadal E, Ródenas JJ (2014) Imposing dirichlet boundary conditions in hierarchical cartesian meshes by means of stabilized lagrange multipliers. Int J Numer Methods Eng 98(6):399–417

    Article  MathSciNet  MATH  Google Scholar 

  78. Tur M, Albelda J, Marco O, Ródenas JJ (2015) Stabilized method to impose dirichlet boundary conditions using a smooth stress field. Comput Methods Appl Mech Eng 296:352–375

    Article  Google Scholar 

  79. Wujek BA, Renaud JE (1998) Automatic differentiation for more efficient system analysis and optimization. Eng Optim 31(1):101–139

    Article  Google Scholar 

  80. Yang RJ, Fiedler MJ (1987) Design modelling for large-scale three-dimensional shape optimization problems. ASME Comput Eng 15:177–182

    Google Scholar 

  81. Yoon BG, Belegundu AD (1988) Iterative methods for design sensitivity analysis. AIAA J 26(11):1413–1415

    Article  Google Scholar 

  82. Zhang L, Gerstenberger A, Wang X, Liu WK (2004) Immersed finite element method. Comput Methods Appl Mech Eng 293(21):2051–2067

    Article  MathSciNet  MATH  Google Scholar 

  83. Zhang W, Beckers P (1989) Comparison of different sensitivity analysis approaches for structural shape optimization. In: Computer aided optimum design of structures: recent advances. Springer, Berlin, Heidelberg, pp 347–356

  84. Zhang Y, Wang W, Hughes TJR (2013) Conformal solid T-spline construction from boundary T-spline representations. Comput Mech 6(51):1051–1059

    Article  MathSciNet  MATH  Google Scholar 

  85. Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24(2):337–357

    Article  MathSciNet  MATH  Google Scholar 

  86. Zienkiewicz OC, Taylor RL, Zhu J (2013) The finite element method: its basis and fundamentals, 7th edn. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Spanish Ministerio de Economía y Competitividad for the financial support received through the project DPI2013-46317-R and the FPI program (BES-2011-044080), and the Generalitat Valenciana through the Project PROMETEO/2016/007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onofre Marco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marco, O., Ródenas, J.J., Fuenmayor, F.J. et al. An extension of shape sensitivity analysis to an immersed boundary method based on Cartesian grids. Comput Mech 62, 701–723 (2018). https://doi.org/10.1007/s00466-017-1522-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1522-0

Keywords

Navigation