Evaluation of hyperspectral imaging (HSI) for the measurement of ischemic conditioning effects of the gastric conduit during esophagectomy



Hyperspectral imaging (HSI) is a relatively new method used in image-guided and precision surgery, which has shown promising results for characterization of tissues and assessment of physiologic tissue parameters. Previous methods used for analysis of preconditioning concepts in patients and animal models have shown several limitations of application. The aim of this study was to evaluate HSI for the measurement of ischemic conditioning effects during esophagectomy.


Intraoperative hyperspectral images of the gastric tube through the mini-thoracotomy were recorded from n = 22 patients, 14 of whom underwent laparoscopic gastrolysis and ischemic conditioning of the stomach with two-step transthoracic esophagectomy and gastric pull-up with intrathoracic anastomosis after 3–7 days. The tip of the gastric tube (later esophagogastric anastomosis) was measured with HSI. Analysis software provides a RGB image and 4 false color images representing physiologic parameters of the recorded tissue area intraoperatively. These parameters contain tissue oxygenation (StO2), perfusion—(NIR Perfusion Index), organ hemoglobin (OHI), and tissue water index (TWI).


Intraoperative HSI of the gastric conduit was possible in all patients and did not prolong the regular operative procedure due to its quick applicability. In particular, the tissue oxygenation of the gastric conduit was significantly higher in patients who underwent ischemic conditioning (\({\overline {{{\text{St}}{{\text{O}}_2}}} _{_{{{\text{Precond}}.}}}}\) = 78%; \({\overline {{{\text{St}}{{\text{O}}_2}}} _{_{{{\text{NoPrecond}}.}}}}\) = 66%; p = 0.03).


HSI is suitable for contact-free, non-invasive, and intraoperative evaluation of physiological tissue parameters within gastric conduits. Therefore, HSI is a valuable method for evaluating ischemic conditioning effects and may contribute to reduce anastomotic complications. Additional studies are needed to establish normal values and thresholds of the presented parameters for the gastric conduit anastomotic site.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Bartels H, Siewert JR (2008) Therapie der Mediastinitis am Beispiel des Ösophaguskarzinoms. Chir 79(1):30–37

    CAS  Google Scholar 

  2. 2.

    Veeramootoo D, Shore AC, Wajed SA (2012) Randomized controlled trial of laparoscopic gastric ischemic conditioning prior to minimally invasive esophagectomy, the LOGIC trial. Surg Endosc 26(7):1822–1829

    PubMed  Google Scholar 

  3. 3.

    Gockel I, Niebisch S, Ahlbrand CJ, Hoffmann C, Möhler M, Düber C et al (2016) Risk and complication management in esophageal cancer surgery: a review of the literature. Thorac Cardiovasc Surg 64(7):596–605

    PubMed  Google Scholar 

  4. 4.

    Pham TH, Perry KA, Enestvedt CK, Gareau D, Dolan JP, Sheppard BC et al (2011) Decreased conduit perfusion measured by spectroscopy is associated with anastomotic complications. Ann Thorac Surg 91(2):380–385

    PubMed  Google Scholar 

  5. 5.

    Markar SR, Arya S, Karthikesalingam A, Hanna GB (2013) Technical factors that affect anastomotic integrity following esophagectomy: systematic review and meta-analysis. Ann Surg Oncol 20(13):4274–4281

    PubMed  Google Scholar 

  6. 6.

    Urschel JD (1995) Ischemic conditioning of the rat stomach: implications for esophageal replacement with stomach. J Cardiovasc Surg (Torino) 36(2):191–193

    CAS  Google Scholar 

  7. 7.

    Nguyen NT, Longoria M, Sabio A, Chalifoux S, Lee J, Chang K et al (2006) Preoperative laparoscopic ligation of the left gastric vessels in preparation for esophagectomy. Ann Thorac Surg 81(6):2318–2320

    PubMed  Google Scholar 

  8. 8.

    Hölscher AH, Schneider PM, Gutschow C, Schröder W (2007) Laparoscopic ischemic conditioning of the stomach for esophageal replacement. Ann Surg 245(2):241–246

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Schröder W, Hölscher AH, Bludau M, Vallböhmer D, Bollschweiler E, Gutschow C (2010) Ivor-Lewis esophagectomy with and without laparoscopic conditioning of the gastric conduit. World J Surg 34(4):738–743

    PubMed  Google Scholar 

  10. 10.

    Urschel JD (1997) Ischemic conditioning of the stomach may reduce the incidence of esophagogastric anastomotic leaks complicating esophagectomy: a hypothesis. Dis Esophagus 10(3):217–219

    CAS  PubMed  Google Scholar 

  11. 11.

    Akiyama S, Ito S, Sekiguchi H, Fujiwara M, Sakamoto J, Kondo K et al (1996) Preoperative embolization of gastric arteries for esophageal cancer. Surgery 120(3):542–546

    CAS  PubMed  Google Scholar 

  12. 12.

    Akiyama S, Kodera Y, Sekiguchi H, Kasai Y, Kondo K, Ito K et al (1998) Preoperative embolization therapy for esophageal operation. J Surg Oncol 69(4):219–223

    CAS  PubMed  Google Scholar 

  13. 13.

    Isomura T, Itoh S, Endo T, Akiyama S, Maruyama K, Ishiguchi T et al (1999) Efficacy of gastric blood supply redistribution by transarterial embolization: preoperative procedure to prevent postoperative anastomotic leaks following esophagoplasty for esophageal carcinoma. Cardiovasc Intervent Radiol 22(2):119–123

    CAS  PubMed  Google Scholar 

  14. 14.

    Diana M, Hübner M, Vuilleumier H, Bize P, Denys A, Demartines N et al (2011) Redistribution of gastric blood flow by embolization of gastric arteries before esophagectomy. Ann Thorac Surg 91(5):1546–1551

    PubMed  Google Scholar 

  15. 15.

    Farran L, Miro M, Alba E, Bettonica C, Aranda H, Galan M et al (2011) Preoperative gastric conditioning in cervical gastroplasty. Dis Esophagus Off J Int Soc Dis Esophagus 24(4):205–210

    Google Scholar 

  16. 16.

    Ghelfi J, Brichon P-Y, Frandon J, Boussat B, Bricault I, Ferretti G et al (2017) Ischemic gastric conditioning by preoperative arterial embolization before oncologic esophagectomy: a single-center experience. Cardiovasc Intervent Radiol 40(5):712–720

    PubMed  Google Scholar 

  17. 17.

    Nguyen NT, Nguyen X-MT, Reavis KM, Elliott C, Masoomi H, Stamos MJ (2012) Minimally invasive esophagectomy with and without gastric ischemic conditioning. Surg Endosc 26(6):1637–1641

    PubMed  Google Scholar 

  18. 18.

    Perry KA, Banarjee A, Liu J, Shah N, Wendling MR, Melvin WS (2013) Gastric ischemic conditioning increases neovascularization and reduces inflammation and fibrosis during gastroesophageal anastomotic healing. Surg Endosc 27(3):753–760

    PubMed  Google Scholar 

  19. 19.

    Reavis KM, Chang EY, Hunter JG, Jobe BA (2005) Utilization of the delay phenomenon improves blood flow and reduces collagen deposition in esophagogastric anastomoses. Ann Surg 241(5):736–745. (discussion 745–747)

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Berrisford RG, Veeramootoo D, Parameswaran R, Krishnadas R, Wajed SA (2009) Laparoscopic ischaemic conditioning of the stomach may reduce gastric-conduit morbidity following total minimally invasive oesophagectomy. Eur J Cardio-Thorac Surg Off J Eur Assoc Cardio-Thorac Surg 36(5):888–893. (discussion 893)

    Google Scholar 

  21. 21.

    Veeramootoo D, Shore AC, Shields B, Krishnadas R, Cooper M, Berrisford RG et al (2010) Ischemic conditioning shows a time-dependant influence on the fate of the gastric conduit after minimally invasive esophagectomy. Surg Endosc 24(5):1126–1131

    PubMed  Google Scholar 

  22. 22.

    Wajed SA, Veeramootoo D, Shore AC (2012) Surgical optimisation of the gastric conduit for minimally invasive oesophagectomy. Surg Endosc 26(1):271–276

    PubMed  Google Scholar 

  23. 23.

    Pierie JP, De Graaf PW, Poen H, Van der Tweel I, Obertop H (1994) Impaired healing of cervical oesophagogastrostomies can be predicted by estimation of gastric serosal blood perfusion by laser Doppler flowmetry. Eur J Surg Acta Chir 160(11):599–603

    CAS  Google Scholar 

  24. 24.

    Monnet E, Pelsue D, Macphail C (2006) Evaluation of laser Doppler flowmetry for measurement of capillary blood flow in the stomach wall of dogs during gastric dilatation-volvulus. Vet Surg 35(2):198–205

    PubMed  Google Scholar 

  25. 25.

    Bludau M, Hölscher AH, Vallböhmer D, Gutschow C, Schröder W (2010) Ischemic conditioning of the gastric conduit prior to esophagectomy improves mucosal oxygen saturation. Ann Thorac Surg 90(4):1121–1126

    PubMed  Google Scholar 

  26. 26.

    Mittermair C, Klaus A, Scheidl S, Maglione M, Hermann M, Margreiter R et al (2008) Functional capillary density in ischemic conditioning: implications for esophageal resection with the gastric conduit. Am J Surg 196(1):88–92

    PubMed  Google Scholar 

  27. 27.

    Ishiguro T, Kumagai Y, Ono T, Imaizumi H, Honjo H, Suzuki O et al (2012) Usefulness of indocyanine green angiography for evaluation of blood supply in a reconstructed gastric tube during esophagectomy. Int Surg 97(4):340–344

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kumagai Y, Ishiguro T, Haga N, Kuwabara K, Kawano T, Ishida H (2014) Hemodynamics of the reconstructed gastric tube during esophagectomy: assessment of outcomes with indocyanine green fluorescence. World J Surg 38(1):138–143

    PubMed  Google Scholar 

  29. 29.

    Kitagawa H, Namikawa T, Iwabu J, Fujisawa K, Uemura S, Tsuda S et al (2018) Assessment of the blood supply using the indocyanine green fluorescence method and postoperative endoscopic evaluation of anastomosis of the gastric tube during esophagectomy. Surg Endosc 32(4):1749–1754

    PubMed  Google Scholar 

  30. 30.

    Holmer A, Marotz J, Wahl P, Dau M, Kämmerer PW (2018) Hyperspectral imaging in perfusion and wound diagnostics—methods and algorithms for the determination of tissue parameters. Biomed Eng Biomed Tech 63(5):547–556

    Google Scholar 

  31. 31.

    Panasyuk SV, Yang S, Faller DV, Ngo D, Lew RA, Freeman JE et al (2007) Medical hyperspectral imaging to facilitate residual tumor identification during surgery. Cancer Biol Ther 6(3):439–446

    PubMed  Google Scholar 

  32. 32.

    Akbari H, Uto K, Kosugi Y, Kojima K, Tanaka N (2011) Cancer detection using infrared hyperspectral imaging. Cancer Sci 102(4):852–857

    CAS  PubMed  Google Scholar 

  33. 33.

    Kumashiro R, Konishi K, Chiba T, Akahoshi T, Nakamura S, Murata M et al (2016) Integrated endoscopic system based on optical imaging and hyperspectral data analysis for colorectal cancer detection. Anticancer Res 8:3925–3932

    Google Scholar 

  34. 34.

    Lu G, Little JV, Wang X, Zhang H, Patel MR, Griffith CC et al (2017) Detection of head and neck cancer in surgical specimens using quantitative hyperspectral imaging. Clin Cancer Res 23(18):5426–5436

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Beaulieu RJ, Goldstein SD, Singh J, Safar B, Banerjee A, Ahuja N (2018) Automated diagnosis of colon cancer using hyperspectral sensing. Int J Med Robot 14(3):e1897

    PubMed  Google Scholar 

  36. 36.

    Ortega S, Fabelo H, Camacho R, de la Luz Plaza M, Callicó GM, Sarmiento R (2018) Detecting brain tumor in pathological slides using hyperspectral imaging. Biomed Opt Express 9(2):818

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Holmer A, Tetschke F, Marotz J, Malberg H, Markgraf W, Thiele C et al (2016) Oxygenation and perfusion monitoring with a hyperspectral camera system for chemical based tissue analysis of skin and organs. Physiol Meas 1;37(11):2064–2078

    PubMed  Google Scholar 

  38. 38.

    Daeschlein G, Langner I, Wild T, von Podewils S, Sicher C, Kiefer T et al (2017) Hyperspectral imaging as a novel diagnostic tool in microcirculation of wounds. Jünger M, Krüger-Genge A, Jung F, editors. Clin Hemorheol Microcirc 67(3–4):467–74

  39. 39.

    Kulcke A, Holmer A, Wahl P, Siemers F, Wild T, Daeschlein G (2018) A compact hyperspectral camera for measurement of perfusion parameters in medicine. Biomed Tech (Berl)

  40. 40.

    Jansen-Winkeln B, Maktabi M, Takoh JP, Rabe SM, Barberio M, Köhler H et al (2018) Hyperspektral-Imaging bei gastrointestinalen Anastomosen. Chir 89(9):717–725

    CAS  Google Scholar 

  41. 41.

    Nouvong A, Hoogwerf B, Mohler E, Davis B, Tajaddini A, Medenilla E (2009) Evaluation of diabetic foot ulcer healing with hyperspectral imaging of oxyhemoglobin and deoxyhemoglobin. Diabetes Care 32(11):2056–2061

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Jeffcoate WJ, Clark DJ, Savic N, Rodmell PI, Hinchliffe RJ, Musgrove A et al (2015) Use of HSI to measure oxygen saturation in the lower limb and its correlation with healing of foot ulcers in diabetes. Diabet Med J Br Diabet Assoc 32(6):798–802

    CAS  Google Scholar 

  43. 43.

    Calin MA, Coman T, Parasca SV, Bercaru N, Savastru R, Manea D (2015) Hyperspectral imaging-based wound analysis using mixture-tuned matched filtering classification method. J Biomed Opt 20(4):046004

    PubMed  Google Scholar 

  44. 44.

    Sakota D, Nagaoka E, Maruyama O (2015) Hyperspectral imaging of vascular anastomosis associated with blood flow and hemoglobin concentration. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf 2015:4246–4249

    Google Scholar 

  45. 45.

    Urschel JD, Antkowiak JG, Delacure MD, Takita H (1997 Dec) Ischemic conditioning (delay phenomenon) improves esophagogastric anastomotic wound healing in the rat. J Surg Oncol 66(4):254–256

    CAS  PubMed  Google Scholar 

  46. 46.

    Jafari MD, Wexner SD, Martz JE, McLemore EC, Margolin DA, Sherwinter DA et al (2015) Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): a multi-institutional study. J Am Coll Surg 220(1):82–92.e1

    Google Scholar 

  47. 47.

    Diana M, Noll E, Diemunsch P, Dallemagne B, Benahmed MA, Agnus V et al (2014) Enhanced-reality video fluorescence: a real-time assessment of intestinal viability. Ann Surg 259(4):700–707

    PubMed  Google Scholar 

  48. 48.

    Diana M, Halvax P, Dallemagne B, Nagao Y, Diemunsch P, Charles A-L et al (2014) Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery. Surg Endosc 28(11):3108–3118

    PubMed  Google Scholar 

  49. 49.

    Diana M, Agnus V, Halvax P, Liu Y-Y, Dallemagne B, Schlagowski A-I et al (2015) Intraoperative fluorescence-based enhanced reality laparoscopic real-time imaging to assess bowel perfusion at the anastomotic site in an experimental model: Intraoperative fluorescence-based enhanced reality laparoscopic real-time imaging. Br J Surg 102(2):e169–e176

    CAS  PubMed  Google Scholar 

  50. 50.

    Keller A (2009) A new diagnostic algorithm for early prediction of vascular compromise in 208 microsurgical flaps using tissue oxygen saturation measurements. Ann Plast Surg 62(5):538–543

    CAS  PubMed  Google Scholar 

  51. 51.

    Jafari-Saraf L, Wilson SE, Gordon IL (2012 May) Hyperspectral image measurements of skin hemoglobin compared with transcutaneous PO2 measurements. Ann Vasc Surg 26(4):537–548

    PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ines Gockel.

Ethics declarations


The hyperspectral camera used for the measurements in this publication was developed by Diaspective Vision GmbH. H. Köhler is an employee of this company. In the long term, Diaspective Vision has proprietary interest in the development of the camera system resulting in a product for routine clinical use. The clinical tests of the camera have been performed by clinicians (authors 2, 4–8, and 11). B. Jansen-Winkeln, M. Maktabi, M. Barberio, J. Takoh, N. Holfert, Y. Moulla, S. Niebisch, M. Diana, T. Neumuth, S. M. Rabe, C. Chalopin, A. Melzer, and I. Gockel have no financial interests and financial arrangements with Diaspective Vision and have received no funding for the measurements and/or preparation of this manuscript. The cameras used during the measurements have been provided by Diaspective Vision.

Ethical approval

Experimental hyperspectral measurements from patients for the evaluation of the new technology have obtained the ethics approval by the Ethics committee of the University Leipzig under 026/18-ek. The study was conducted according to the Declaration of Helsinki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Köhler, H., Jansen-Winkeln, B., Maktabi, M. et al. Evaluation of hyperspectral imaging (HSI) for the measurement of ischemic conditioning effects of the gastric conduit during esophagectomy. Surg Endosc 33, 3775–3782 (2019). https://doi.org/10.1007/s00464-019-06675-4

Download citation


  • Hyperspectral imaging
  • Gastric conduit
  • Esophagectomy
  • Ischemic conditioning
  • Physiologic tissue parameters