Skip to main content

Advertisement

Log in

Diffusion of robotic-assisted laparoscopic technology across specialties: a national study from 2008 to 2013

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Introduction

Robotic-assisted procedures were frequently found to have similar outcomes and indications to their laparoscopic counterparts, yet significant variation existed in the acceptance of robotic-assisted technology between surgical specialties and procedures. We performed a retrospective cohort study investigating factors associated with the adoption of robotic assistance across the United States from 2008 to 2013.

Methods

Using the Nationwide Inpatient Sample database, patient- and hospital-level variables were examined for differential distribution between robotic-assisted and conventional laparoscopic procedures. Multilevel logistic regression models were constructed to identify independent factors associated with robotic adoption. Furthermore, cases were stratified by procedure and specialty before being ranked according to proportion of robotic-assistance adoption. Correlation was examined between robotic-assistance adoption and relative outcome in comparison with conventional laparoscopic procedures.

Results

The national robotic case volume doubled over the five-year period while a gradual decline in laparoscopic case volume was observed, resulting in an increase in the proportion of procedures performed with robotic assistance from 6.8 to 17%. Patients receiving robotic procedures were more likely to be younger, males, white, privately insured, more affluent, and with less comorbidities. These differences have been decreasing over the study period. The three specialties with the highest proportion of robotic-assisted laparoscopic procedures were urology (34.1%), gynecology (11.0%), and endocrine surgery (9.4%). However, no significant association existed between the frequency of robotic-assistance usage and relative outcome statistics such as mortality, charge, or length of stay.

Conclusion

The variation in robotic-assistance adoption between specialties and procedures could not be attributable to clinical outcomes alone. Cultural readiness toward adopting new technology within specialty and target anatomic areas appear to be major determining factors influencing its adoption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rogers EM (2003) Diffusion of innovations, 5th edn. Free Press, New York

    Google Scholar 

  2. Barkun JS, Aronson JK, Feldman LS, Maddern GJ, Strasberg SM, Altman DG, Blazeby JM, Boutron IC, Campbell WB, Clavien PA, Cook JA, Ergina PL, Flum DR, Glasziou P, Marshall JC, McCulloch P, Nicholl J, Reeves BC, Seiler CM, Meakins JL, Ashby D, Black N, Bunker J, Burton M, Campbell M, Chalkidou K, Chalmers I, de Leval M, Deeks J, Grant A, Gray M, Greenhalgh R, Jenicek M, Kehoe S, Lilford R, Littlejohns P, Loke Y, Madhock R, McPherson K, Rothwell P, Summerskill B, Taggart D, Tekkis P, Thompson M, Treasure T, Trohler U, Vandenbroucke J (2009) Evaluation and stages of surgical innovations. Lancet 374:1089–1096

    Article  PubMed  Google Scholar 

  3. Binder J, Kramer W (2001) Robotically-assisted laparoscopic radical prostatectomy. BJU Int 87:408–410

    Article  CAS  PubMed  Google Scholar 

  4. Abbou CC, Hoznek A, Salomon L, Lobontiu A, Saint F, Cicco A, Antiphon P, Chopin D (2000) Remote laparoscopic radical prostatectomy carried out with a robot. Report of a case. Prog Urol 10:520–523

    CAS  PubMed  Google Scholar 

  5. Elhage O, Challacombe B, Shortland A, Dasgupta P (2015) An assessment of the physical impact of complex surgical tasks on surgeon errors and discomfort: a comparison between robot-assisted, laparoscopic and open approaches. BJU Int 115:274–281

    Article  PubMed  Google Scholar 

  6. Hollingsworth JM, Krein SL, Dunn RL, Wolf JS Jr, Hollenbeck BK (2008) Understanding variation in the adoption of a new technology in surgery. Med Care 46:366–371

    Article  PubMed  Google Scholar 

  7. Parsons JK, Messer K, Palazzi K, Stroup SP, Chang D (2014) Diffusion of surgical innovations, patient safety, and minimally invasive radical prostatectomy. JAMA Surg 149:845–851

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mirheydar HS, Parsons JK (2012) Diffusion of robotics into clinical practice in the United States: process, patient safety, learning curves, and the public health. World J Urol 31:455–461

    Article  PubMed  Google Scholar 

  9. Casula R, Athanasiou T, Foale R (2004) Recent advances in minimal-access cardiac surgery using robotic-enhanced surgical systems. Expert Rev Cardiovasc Ther 2:589–600

    Article  PubMed  Google Scholar 

  10. Ismail M, Swierzy M, Ulrich M, Ruckert JC (2013) Application of the da Vinci robotic system in thoracic surgery. Chirurg 84:643–650

    Article  CAS  PubMed  Google Scholar 

  11. Herrell SD, Webster R, Simaan N (2014) Future robotic platforms in urologic surgery: recent developments. Curr Opin Urol 24:118–126

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jung M, Morel P, Buehler L, Buchs NC, Hagen ME (2015) Robotic general surgery: current practice, evidence, and perspective. Langenbecks Arch Surg 400:283–292

    Article  CAS  PubMed  Google Scholar 

  13. Mirnezami AH, Mirnezami R, Venkatasubramaniam AK, Chandrakumaran K, Cecil TD, Moran BJ (2010) Robotic colorectal surgery: hype or new hope?: A systematic review of robotics in colorectal surgery. Colorectal Dis 12:1084–1093

    Article  CAS  PubMed  Google Scholar 

  14. Choi JE, You JH, Kim DK, Rha KH, Lee SH (2010) Comparison of perioperative outcomes between robotic and laparoscopic partial nephrectomy: a systematic review and meta-analysis. Eur Urol 67:891–901

    Article  Google Scholar 

  15. Robertson C, Close A, Fraser C, Gurung T, Jia X, Sharma P, Vale L, Ramsay C, Pickard R (2013) Relative effectiveness of robot-assisted and standard laparoscopic prostatectomy as alternatives to open radical prostatectomy for treatment of localised prostate cancer: a systematic review and mixed treatment comparison meta-analysis. BJU Int 112:798–812

    Article  PubMed  Google Scholar 

  16. Gaia G, Holloway RW, Santoro L, Ahmad S, Di Silverio E, Spinillo A (2010) Robotic-assisted hysterectomy for endometrial cancer compared with traditional laparoscopic and laparotomy approaches: a systematic review. Obstet Gynecol 116:1422–1431

    Article  PubMed  Google Scholar 

  17. Juo YY, Hyder O, Haider AH, Camp M, Lidor A, Ahuja N (2014) Is minimally invasive colon resection better than traditional approaches? First comprehensive national examination with propensity score matching. JAMA Surg 149:177–184

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nagendran J, Catrip J, Losenno KL, Adams C, Kiaii B, Chu MW (2017) Minimally invasive mitral repair surgery: why does controversy still persist? Expert Rev Cardiovasc Ther 15:15–24

    Article  CAS  PubMed  Google Scholar 

  19. Patel R, Szymaniak J, Radadia K, Faiena I, Lasser M (2015) Controversies in robotics: open versus robotic radical cystectomy. Clin Genitourin Cancer 13:421–427

    Article  PubMed  Google Scholar 

  20. Albright BB, Witte T, Tofte AN, Chou J, Black JD, Desai VB, Erekson EA (2016) Robotic versus laparoscopic hysterectomy for benign disease: a systematic review and meta-analysis of randomized trials. J Minim Invasive Gynecol 23:18–27

    Article  PubMed  Google Scholar 

  21. Cathelineau X, Sanchez-Salas R, Sivaraman A (2014) What is next in robotic urology? Curr Urol Rep 15:460

    Article  PubMed  Google Scholar 

  22. Gala RB, Margulies R, Steinberg A, Murphy M, Lukban J, Jeppson P, Aschkenazi S, Olivera C, South M, Lowenstein L, Schaffer J, Balk EM, Sung V (2014) Systematic review of robotic surgery in gynecology: robotic techniques compared with laparoscopy and laparotomy. J Minim Invasive Gynecol 21:353–361

    Article  PubMed  Google Scholar 

  23. Meshkinpour H, Hsu D, Farivar S (1988) Effect of gastric bubble as a weight reduction device: a controlled, crossover study. Gastroenterology 95:589–592

    Article  CAS  PubMed  Google Scholar 

  24. Ruffin JM, Grizzle JE, Hightower NC, McHardy G, Shull H, Kirsner JB (1969) A co-operative double-blind evaluation of gastric “freezing” in the treatment of duodenal ulcer. N Engl J Med 281:16–19

    Article  CAS  PubMed  Google Scholar 

  25. EC-IC Bypass Study Group (1985) Failure of extracranial-intracranial arterial bypass to reduce the risk of ischemic stroke. Results of an international randomized trial. N Engl J Med 313:1191–1200

    Article  Google Scholar 

  26. Kramer FM, Stunkard AJ, Spiegel TA, Deren JJ, Velchik MG, Wadden TA, Marshall KA (1989) Limited weight losses with a gastric balloon. Arch Intern Med 149:411–413

    Article  CAS  PubMed  Google Scholar 

  27. Warlow C (1991) MRC European Carotid Surgery Trial: interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. Lancet 337:1235–1243

    Article  Google Scholar 

  28. HCUP Nationwide Inpatient Sample (NIS) (2010) Healthcare Cost and Utilization Project (HCUP). Agency for healthcare research and quality. Rockville. http://www.hcup-us.ahrq.gov/nisoverview.jsp. Accessed 30 Jan 2013

  29. Elixhauser A, Steiner C, Harris DR, Coffey RM (1998) Comorbidity measures for use with administrative data. Med Care 36:8–27

    Article  CAS  PubMed  Google Scholar 

  30. Romano PS, Roos LL, Jollis JG (1993) Adapting a clinical comorbidity index for use with ICD-9-CM administrative data: differing perspectives. J Clin Epidemiol 46: 1075–1079; discussion 1081–1090

  31. Cuzick J (1985) A Wilcoxon-type test for trend. Stat Med 4:87–90

    Article  CAS  PubMed  Google Scholar 

  32. StataCorp (2005) Stata data management reference manual, Release 9. Stata Press, College Station

    Google Scholar 

  33. Karthikesalingam A, Holt PJ, Vidal-Diez A, Bahia SS, Patterson BO, Hinchliffe RJ, Thompson MM (2016) The impact of endovascular aneurysm repair on mortality for elective abdominal aortic aneurysm repair in England and the United States. J Vasc Surg 64:321.e322–327.e322

    Google Scholar 

  34. Chmielecki DK, Hagopian EJ, Kuo YH, Kuo YL, Davis JM (2012) Laparoscopic cholecystectomy is the preferred approach in cirrhosis: a nationwide, population-based study. HPB (Oxford) 14:848–853

    Article  Google Scholar 

  35. Jaschinski T, Mosch C, Eikermann M, Neugebauer EA (2015) Laparoscopic versus open appendectomy in patients with suspected appendicitis: a systematic review of meta-analyses of randomised controlled trials. BMC Gastroenterol 15:48

    Article  PubMed  PubMed Central  Google Scholar 

  36. Varda BK, Johnson EK, Clark C, Chung BI, Nelson CP, Chang SL (2014) National trends of perioperative outcomes and costs for open, laparoscopic and robotic pediatric pyeloplasty. J Urol 191:1090–1095

    Article  PubMed  Google Scholar 

  37. Moghadamyeghaneh Z, Phelan M, Smith BR, Stamos MJ (2015) Outcomes of open, laparoscopic, and robotic abdominoperineal resections in patients with rectal cancer. Dis Colon Rectum 58:1123–1129

    Article  PubMed  Google Scholar 

  38. Liu JJ, Leppert JT, Maxwell BG, Panousis P, Chung BI (2014) Trends and perioperative outcomes for laparoscopic and robotic nephrectomy using the National Surgical Quality Improvement Program (NSQIP) database. Urol Oncol 32:473–479

    Article  PubMed  Google Scholar 

  39. Yamasato K, Casey D, Kaneshiro B, Hiraoka M (2014) Effect of robotic surgery on hysterectomy trends: implications for resident education. J Minim Invasive Gynecol 21:399–405

    Article  PubMed  Google Scholar 

  40. Lee MG, Chiu CC, Wang CC, Chang CN, Lee SH, Lee M, Hsu TC, Lee CC (2017) Trends and outcomes of surgical treatment for colorectal cancer between 2004 and 2012—an analysis using national inpatient database. Sci Rep 7:2006

    Article  PubMed  PubMed Central  Google Scholar 

  41. Moran PS, O’Neill M, Teljeur C, Flattery M, Murphy LA, Smyth G, Ryan M (2013) Robot-assisted radical prostatectomy compared with open and laparoscopic approaches: a systematic review and meta-analysis. Int J Urol 20:312–321

    Article  PubMed  Google Scholar 

  42. Maeso S, Reza M, Mayol JA, Blasco JA, Guerra M, Andradas E, Plana MN (2010) Efficacy of the Da Vinci surgical system in abdominal surgery compared with that of laparoscopy: a systematic review and meta-analysis. Ann Surg 252:254–262

    Article  PubMed  Google Scholar 

  43. Trinh BB, Hauch AT, Buell JF, Kandil E (2014) Robot-assisted versus standard laparoscopic colorectal surgery. JSLS. doi:10.4293/JSLS.2014.00154

    Google Scholar 

  44. Yu J, Wang Y, Li Y, Li X, Li C, Shen J (2014) The safety and effectiveness of Da Vinci surgical system compared with open surgery and laparoscopic surgery: a rapid assessment. J Evid Based Med 7:121–134

    Article  PubMed  Google Scholar 

  45. Wright JD, Ananth CV, Lewin SN, Burke WM, Lu YS, Neugut AI, Herzog TJ, Hershman DL (2013) Robotically assisted vs laparoscopic hysterectomy among women with benign gynecologic disease. JAMA 309:689–698

    Article  CAS  PubMed  Google Scholar 

  46. Blake EA, Sheeder J, Behbakht K, Guntupalli SR, Guy MS (2016) Factors impacting use of robotic surgery for treatment of endometrial cancer in the United States. Ann Surg Oncol 23:3744–3748

    Article  PubMed  Google Scholar 

  47. Gabriel E, Thirunavukarasu P, Al-Sukhni E, Attwood K, Nurkin SJ (2016) National disparities in minimally invasive surgery for rectal cancer. Surg Endosc 30:1060–1067

    Article  PubMed  Google Scholar 

  48. Kim SP, Boorjian SA, Shah ND, Weight CJ, Tilburt JC, Han LC, Thompson RH, Trinh QD, Sun M, Moriarty JP, Karnes RJ (2013) Disparities in access to hospitals with robotic surgery for patients with prostate cancer undergoing radical prostatectomy. J Urol 189:514–520

    Article  PubMed  Google Scholar 

  49. Monn MF, Bahler CD, Schneider EB, Sundaram CP (2013) Emerging trends in robotic pyeloplasty for the management of ureteropelvic junction obstruction in adults. J Urol 189:1352–1357

    Article  PubMed  Google Scholar 

  50. Falkenback D, Lehane CW, Lord RV (2015) Robot-assisted oesophageal and gastric surgery for benign disease: antireflux operations and Heller’s myotomy. ANZ J Surg 85:113–120

    Article  PubMed  Google Scholar 

  51. Tolboom RC, Broeders IA, Draaisma WA (2015) Robot-assisted laparoscopic hiatal hernia and antireflux surgery. J Surg Oncol 112:266–270

    Article  CAS  PubMed  Google Scholar 

  52. Benmessaoud C, Kharrazi H, MacDorman KF (2011) Facilitators and barriers to adopting robotic-assisted surgery: contextualizing the unified theory of acceptance and use of technology. PLoS ONE 6:e16395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stafinski T, Topfer LA, Zakariasen K, Menon D (2010) The role of surgeons in identifying emerging technologies for health technology assessment. Can J Surg 53:86–92

    PubMed  PubMed Central  Google Scholar 

  54. Guru KA, Hussain A, Chandrasekhar R, Piacente P, Bienko M, Glasgow M, Underwood W, Wilding G, Mohler JL, Menon M, Peabody JO (2009) Current status of robot-assisted surgery in urology: a multi-national survey of 297 urologic surgeons. Can J Urol 16: 4736–4741; discussion 4741

  55. Tseng TY, Cancel QV, Fesperman SF, Kuebler HR, Sun L, Robertson CN, Polascik TJ, Moul JW, Vieweg J, Albala DM, Dahm P (2007) The role of early adopter bias for new technologies in robot assisted laparoscopic prostatectomy. J Urol 177:1318–1323

    Article  PubMed  Google Scholar 

  56. Wright JD, Raglan GB, Schulkin J, Fialkow MF (2017) Attitudes and beliefs regarding the utility of robotically assisted gynecologic surgery among practicing gynecologists. J Healthc Qual 39(4):211–218. doi:10.1097/JHQ.0000000000000017

    Article  PubMed  Google Scholar 

  57. Cundy TP, Marcus HJ, Hughes-Hallett A, Najmaldin AS, Yang GZ, Darzi A (2017) International attitudes of early adopters to current and future robotic technologies in pediatric surgery. J Pediatr Surg 49:1522–1526

    Article  Google Scholar 

  58. Wexner SD, Bergamaschi R, Lacy A, Udo J, Brolmann H, Kennedy RH, John H (2009) The current status of robotic pelvic surgery: results of a multinational interdisciplinary consensus conference. Surg Endosc 23:438–443

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Dutson.

Ethics declarations

Disclosures

Drs. Juo, Lin, Dutson, Ahmad, and Aditya have no conflicts of interest or financial ties to disclose.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 1 (DOCX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juo, YY., Mantha, A., Abiri, A. et al. Diffusion of robotic-assisted laparoscopic technology across specialties: a national study from 2008 to 2013. Surg Endosc 32, 1405–1413 (2018). https://doi.org/10.1007/s00464-017-5822-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-017-5822-4

Keywords

Navigation