Advertisement

Local h-Vectors of Quasi-Geometric and Barycentric Subdivisions

  • Martina Juhnke-Kubitzke
  • Satoshi Murai
  • Richard Sieg
Article
  • 20 Downloads

Abstract

In this paper, we answer two questions on local h-vectors, which were asked by Athanasiadis. First, we characterize all possible local h-vectors of quasi-geometric subdivisions of a simplex. Second, we prove that the local \(\gamma \)-vector of the barycentric subdivision of any CW-regular subdivision of a simplex is nonnegative. Along the way, we derive a new recurrence formula for the derangement polynomials.

Keywords

Local h-vector \(\gamma \)-vector Barycentric subdivision Quasi-geometric subdivision 

Mathematics Subject Classification

05E45 05A05 

Notes

Acknowledgements

We wish to thank Christos Athanasiadis for his useful comments. The third author wants to express his gratitude to Isabella Novik for her hospitality at the University of Washington and interesting discussions about the subject. We would like to thank the reviewers for useful comments, especially for pointing out the result in Remark 4.8. The first and the third author were partially supported by the German Research Council DFG-GRK 1916. The second author was partially supported by JSPS KAKENHI JP16K05102.

References

  1. 1.
    Ahmad, V., Welker, S.: On partial barycentric subdivision. Results Math. 73(1). Art. No. 21 (2018)Google Scholar
  2. 2.
    Athanasiadis, C.A.: Flag subdivisions and \(\gamma \)-vectors. Pac. J. Math. 259(2), 257–278 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Athanasiadis, C.A.: The local \(h\)-polynomial of the edgewise subdivision of the simplex. Bull. Hellenic Math. Soc. 60, 11–19 (2016)MathSciNetGoogle Scholar
  4. 4.
    Athanasiadis, C.A.: A survey of subdivisions and local \( h \)-vectors. In: Hersh, P., et al. (eds.) The Mathematical Legacy of Richard P. Stanley, pp. 39–51. American Mathematical Society, Providence (2016)CrossRefGoogle Scholar
  5. 5.
    Athanasiadis, C.A., Savvidou, C.: The local \(h\)-vector of the cluster subdivision of a simplex. Sém. Lothar. Combin. 66. Art. No. B66c (2011/2012)Google Scholar
  6. 6.
    Beck, M., Stapledon, A.: On the log-concavity of Hilbert series of Veronese subrings and Ehrhart seris. Math. Z. 264(1), 195–207 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Brenti, F.: Unimodal polynomials arising from symmetric functions. Proc. Am. Math. Soc. 108(4), 1133–1141 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brun, M., Römer, T.: Subdivisions of toric complexes. J. Algebr. Comb. 21(4), 423–448 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chan, C.: On subdivisions of simplicial complexes: characterizing local \(h\)-vectors. Discrete Comput. Geom. 11(4), 465–476 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Charney, R., Davis, M.: The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold. Pac. J. Math. 171(1), 117–137 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ehrenborg, R., Karu, K.: Decomposition theorem for the cd-index of Gorenstein* posets. J. Algebr. Comb. 26(2), 225–251 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gal, Ś.R.: Real root conjecture fails for five- and higher-dimensional spheres. Discrete Comput. Geom. 34(2), 269–284 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kozlov, D.N.: Chromatic subdivision of a simplicial complex. Homol. Homotopy Appl. 14(2), 197–209 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Stanley, R.P.: Subdivisions and local \(h\)-vectors. J. Am. Math. Soc. 5(4), 805–851 (1992)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Stanley, R.P.: Combinatorics and Commutative Algebra. Progress in Mathematics, vol. 41, 2nd edn. Birkhäuser, Boston (2004)zbMATHGoogle Scholar
  16. 16.
    Walker, J.W.: Canonical homeomorphisms of posets. Eur. J. Comb. 9(2), 97–107 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhang, X.: On \(q\)-derangement polynomials. Comb. Graph Theory 95, 462–465 (1995)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.FB Mathematik/ InformatikUniversität OsnabrückOsnabrückGermany
  2. 2.Department of Mathematics, School of EducationWaseda UniversityShinjukuJapan

Personalised recommendations